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The Dirac cone on a surface of a topological insulator shows linear dispersion analogous to optics and

its velocity depends on materials. We consider a junction of two topological insulators with different

velocities, and calculate the reflectance and transmittance. We find that they reflect the backscattering-free

nature of the helical surface states. When the two velocities have opposite signs, both transmission and

reflection are prohibited for normal incidence, when a mirror symmetry normal to the junction is

preserved. In this case we show that there necessarily exist gapless states at the interface between the

two topological insulators. Their existence is protected by mirror symmetry, and they have characteristic

dispersions depending on the symmetry of the system.
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Recently physical phenomena originating from the
Dirac cones of electrons have been studied in the context
of a graphene sheet [1] or the topological insulator (TI)
[2–5]. In a graphene sheet, novel transport phenomena are
predicted theoretically in p-n junction systems: for ex-
ample, the Klein paradox [6], and the negative refraction
[7]. The TI in three dimensions (3D) [4,5], such as Bi2Se3
[8,9] and Bi2Te3 [10], has a single Dirac cone in its surface
states, as observed by angle-resolved photoemission spec-
troscopy. Unlike graphene, the states on the Dirac cone on
the surface of the TI are spin filtered; they have fixed spin
directions for each wave number k. Because the state at k
and that at �k have the opposite spins, the perfect back-
scattering from k to �k is forbidden.

Such linear dispersion is similar to photons. The velocity
of the Dirac cone on the surface of 3D TI depends on
materials. For example, the velocity for Bi2Te3 is about
4� 105 m=s [10] depending on the direction of the wave
vector, and that for Bi2Se3 is approximately 5� 105 m=s
[8]. Therefore, when two different TIs are attached
together, the refraction phenomenon similar to optics is
expected at the junction. In this Letter, we theoretically
study the refraction of electrons at the junction between the
surfaces of two TIs [Fig. 1(a)]. The resulting transmittance
and reflectance are different from optics, reflecting prohib-
ited perfect backscattering. In addition, we show that when
the velocities of the two TIs have opposite signs, neither
refraction nor reflection is allowed for the incident electron
normal to the junction. In this case, we can show that there
necessarily exist gapless interface states between the two
TIs and the incident surface electrons totally go into the
interface states. As long as the mirror symmetry with
respect to the yz plane Myz is preserved, the interface

gapless states exist. These gapless states are formed at the
interface between the same Z2 nontrivial materials. As a
result, these interface states do not come from the Z2

topological number, but come from the mirror Chern num-
ber [11], and are protected by the mirror symmetry Myz.

The effective Dirac Hamiltonian of the surface states on
the xz plane is represented as

H ¼ �iv½�x@z � �y@x�; (1)

where �x, �y are the Pauli matrices, and v is the Fermi

velocity. From the Hamiltonian one can obtain the linear
energy E ¼ svk where k ¼ jkj, and s ¼ þ1ð�1Þ corre-
sponds to the upper (lower) cone, provided v > 0. We
consider a refraction problem between the two TIs, which
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FIG. 1 (color online). (a) Schematic of the refraction of the
surface states at the junction between the two TIs, TI1 and
TI2. (b)(c): Reflectance and transmittance for the ratios of the
velocities of the two TIs: (b) v2=v1 ¼ 0:6 and (c) v2=v1 ¼ 1:4.
The solid curves are the results for the junction between two TIs,
while the dotted curves show the results for optics with p and s
polarizations.
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we call TI1 and TI2, with the incidence angle �, the trans-
mission angle �0, and the reflection angle �R [Fig. 1(a)].
As in optics, the momentum conservation requires �R ¼ �,

and the wave functions are written as c Iðx;zÞ¼
1ffiffi
2

p eikðxsin�þzcos�Þð1;e�i�Þt, c Tðx;zÞ¼ 1ffiffi
2

p eik
0ðxsin�0þzcos�0Þ�

ð1;e�i�0 Þt, c Rðx; zÞ ¼ 1ffiffi
2

p eikðx sin��z cos�Þð1;�ei�Þt, where k

and k0 are the wave numbers on TI1 and TI2, respectively,
and we consider the Fermi energy EF > 0 (i.e., above the
Dirac point), giving s ¼ þ1 for both of the TIs. Let v1 and
v2 denote the velocities of the two TIs.

We first assume v1 and v2 to be positive. The conserva-
tion of the momentum and the energy yields Snell’s law:
k0 sin�0 ¼ k sin�, v�1

1 sin� ¼ v�1
2 sin�0. Let r and t denote

the amplitude of the reflected and transmitted wave, com-
pared with the incident wave. The current conservation in
the z direction is written as Rþ T ¼ 1, where R � jrj2 and
T � v2 cos�

0
v1 cos�

jtj2 are the reflectance and the transmittance,

respectively. We note that the wave function should even-
tually be discontinuous at the junction when the velocities
are different, as has been studied in the context of graphene
[12,13]. The reason is the following. Therefore, the current
conservation at the interface requires v1zjc 1j2 ¼ v2zjc 2j2,
where v1;2 is a velocity, and the subscripts 1 and 2 represent
TI1 and TI2, respectively. Because in our case v1z � v2z,
we have jc 1j2 � jc 2j2 at the junction, and the continuity
of the wave function is violated. The proper way is to set
the Hamiltonian to be Hermitian also at the boundary, i.e.,
H ¼ �i½ 12 ½vðzÞ�x@z þ �x@zvðzÞ� � vðzÞ�y@x�, where

vðzÞ is the velocity dependent on z. The resulting coeffi-
cients are

r ¼ i
sin�

0��
2

cos�þ�0
2

e�i�; t ¼
ffiffiffiffiffiffi
v1

v2

s
cos�

cos�þ�0
2

eið�0��=2Þ: (2)

They satisfy the current conservation. The results are plot-
ted as the solid curves in Figs. 1(b) and 1(c). The dotted
curves represent corresponding results for optics. Unlike
optics, for normal incidence (� ¼ 0), the perfect
transmission (T ¼ 1, R ¼ 0) occurs, which reflects the
prohibited backscattering on the surface of the TI. This is
similar to graphene [6,12,13] but the transmittance in our
case monotonically decreases with the incidence angle.

Next, we consider the case where the velocities of
the two TIs have opposite signs, where we can no longer
use the above approach. One might think that it is similar to
the negative refraction in optics [14,15], but it is not true
because the Fermi energy is above the Dirac point for the
two TIs. Furthermore, both reflection and transmission are
prohibited for normal incidence, because the incident wave
has no way to conserve its momentum kx along the inter-
face and spin simultaneously (see Fig. 2). Thus it is a
paradox what happens for normal incidence.

Our answer to this question is that gapless states exist at
the interface between the two TIs [the middle region in

Fig. 2(b)]. The normally incident wave goes along the
surface of one TI, then into the interface between the two
TIs. These interface states arise from hybridization be-
tween the two surface states from the two TIs. To show
the existence of gapless interface states, we first write
down the effective Hamiltonian at the interface from the
two Dirac cones with hybridization:

H ¼ H1 V
Vy H2

� �
: (3)

Here H1ð2Þ is the effective surface Hamiltonian for the

surface of TI1 (TI2) at the interface:

H1 ¼ v1ð� � kÞz; H2 ¼ �v2ð� � kÞz (4)

and V is the hybridization at the interface. For simplicity,
we retain only the lowest order in k. In the expression of
H2, there is an extra minus sign; on the surface of TI2 in
Fig. 2, the mode going in the þz direction evolves from
that going in the �y direction, whereby the extra sign
necessarily appears.
We explain the reason for justifying our model in

Eqs. (3) and (4). For simplicity we assumed that the surface
states on the xz surface for TI1 and TI2 are described by the
Dirac cone. Generic surface states with non-Dirac types are
covered in the later discussion using the mirror Chern
number [11]. We used here the fact that the Dirac velocities
for each TI have the same signs for the xy and xz surfaces.
It is because the signs of the Dirac velocities are deter-
mined by the mirror Chern number which is the bulk
quantity [11]. We also set the Dirac cones to be isotropic
for simplicity; the following results turn out to be unaltered
by anisotropy in the Dirac cones. We henceforth impose
the mirror symmetry with respect to the yz plane Myz,

because this symmetry preserved by H1 and H2 sets the
spins parallel to the x axis for the normally ( k ẑ) incident
wave. By imposing this mirror symmetry Myz and time-

reversal symmetry, V is expressed as V ¼ ð gih ih
g Þ, where g

and h are real constants representing the hybridization

FIG. 2 (color online). Transport at the junction between the
surfaces of two TIs, whose velocities have different signs. (a)
Linear dispersion at kx ¼ 0. The incident wave (I) is perpen-
dicular to the junction. Both the transmission (T) and reflection
(R) are prohibited due to spin conservation. (b) Normal inci-
dence. TI1 and TI2 have the velocities of opposite signs.
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between the two surface states. From the Hamiltonian
[Eq. (3)], the eigenvalues are calculated as

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k � �
qr

;

�k ¼ g2 þ h2 þ v2
1 þ v2

2

2
k2;

� ¼ v2
1v

2
2k

4 þ�2
0 � 2v1v2k

2ðh2 cos2�� g2Þ;

(5)

where we set kx þ iky ¼ kei�, and � is real. The condition

for existence of gapless interface states is

v2
1v

2
2k

4 � 2v1v2k
2ðh2 cos2�� g2Þ þ ðg2 þ h2Þ2 ¼ 0:

(6)

To solve this equation, we note that g is nonzero, whereas h
can become zero when additional symmetries such as rota-
tional symmetry with respect to the z axis are imposed.
Then we can see that for v1v2 > 0 (the two velocities with
the same signs), the interface states are gapped by the
hybridization.

Only when two velocities have opposite signs
(v1v2 < 0), are there gapless states on the interface.
Dispersion of the gapless states depends on whether

h � 0 or h ¼ 0. When h � 0, the solutions are ðkx; kyÞ ¼
ð0;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg2 þ h2Þ=jv1v2j

p Þ and there are gapless states on the
interface. The interface states have two Dirac cones
[Fig. 3(a)]. On the other hand, when h ¼ 0 due to rota-
tional symmetry with respect to the z axis, the gap closing

points form a circle k2x þ k2y ¼ g2

jv1v2j . This degeneracy on

the circle in k space is due to the continuous rotational
symmetry around the z axis, and is lifted when it is broken
by adding higher order terms in k, e.g., the warping term in
Bi2Se3 [16]. As seen in Fig. 3(b), the dispersion becomes a
collection of Dirac cones. Therefore, for this example
Hamiltonian, we could show that there are gapless
states at the interface when the system has the mirror
symmetry Myz.

We note that this method is generic, because the analysis
is based only on the symmetry. The only assumption is that
the gapless point is near k ¼ 0, and we can expand the
Hamiltonian in terms of k. To complement this argument,
we show the existence of gapless interface states on ge-
neric grounds. Because these gapless states are generated
between two TIs with the same Z2 topological numbers,
they are not protected in the same sense as the surface
states of three-dimensional TIs. In the following we show
that these gapless interface states are protected by the
mirror symmetry and the time-reversal symmetry. Each
TI with mirror symmetry is characterized by the mirror
Chern number [11]. When the system has the mirror sym-
metry Myz, the surface modes are labeled with the mirror

eigenvalues M ¼ �i at kx ¼ 0, corresponding to the spin

along �x and þx, respectively. The mirror Chern number
is obtained as nM ¼ ðnþi � n�iÞ=2 where n�i are the
Chern numbers [17,18] for the subspace of states with
mirror eigenvalues M ¼ �i. We have nþi ¼ �n�i by
the time-reversal symmetry. In our case where the two
surface Dirac cones have opposite velocities, the mirror

Chern numbers for the two TIs are different. TI1 has nð1ÞM ¼
�1, i.e., nð1Þþi ¼ �1; nð1Þ�i ¼ þ1, and TI2 has nð2ÞM ¼ 1, i.e.,

nð2Þþi ¼ þ1, nð2Þ�i ¼ �1 at the kx ¼ 0 plane. For the M ¼
þi (Sx < 0) subspace, this corresponds to the junction

of two systems with Chern numbers nð1Þþi ¼ �1 and

nð2Þþi ¼ þ1; because nð1Þþi � nð2Þþi ¼ �2, it gives rise to two
left-going chiral modes in the y direction. On the other
hand, for M ¼ �i it also gives two right-going chiral
modes in the y direction. These modes are schematically
shown in Fig. 3(d). Therefore it is natural to generate the
two Dirac cones in the junction. Thus these gapless states
are protected by the mirror symmetry. If the mirror sym-
metry is not preserved, the gapless states do not exist in
general. This discussion is generic, and is complementary
to our discussion by the surface Dirac Hamiltonian.
Therefore, we conclude that the gapless interface states
exist for the generic cases with mirror symmetry, even
with, e.g., lattice mismatch at the interface. In real mate-
rials, mirror symmetry may be lost by disorder in principle;
nevertheless, if the sample is relatively clean, the gapless

FIG. 3 (color online). (a)(b) Dispersion on the interface be-
tween the two TIs in Eq. (5) with velocities v1 ¼ 1, v2 ¼ �2. In
(a), the hybridization is g ¼ 2, h ¼ 1. There are two Dirac points

ðkx; kyÞ ¼ ð0;� ffiffiffiffiffiffiffiffi
5=2

p Þ where the gap closes. In (b), the hybrid-

ization is g ¼ 2, h ¼ 0 and the warping term �ðk3þ þ k3�Þ�z

with � ¼ 0:4 added to H1 and H2. There appear six Dirac cones.
(c) Illustration of the interface mode. The surface current goes
into the interface. (d) Schematic of the dispersion of interface
states on kx ¼ 0.
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interface states are expected to survive and can be mea-
sured experimentally.

The distance between the Dirac cones of the gapless
interface states are proportional to the magnitude of the
hybridization between the two TIs at the interface. When
the hybridization becomes as strong as the bandwidth, the
spacing between the interface Dirac cones is of the order of
inverse of the lattice spacing. In that case the transport
properties will be like the graphene, having two Dirac
cones at K and K0 points. We note that in graphene there
are spin-degenerate Dirac cones, whereas in the present
case the interface Dirac cones are not spin degenerate.
From Fig. 3(d), when the wave number k goes around
one of the Dirac point, the spin direction also rotates
around the z axis (normal to the interface). In the similar
way as in graphene, one can consider the valley degree of
freedom as a pseudospin, and develop valleytronics [19,20]
similar to graphene. These interface states can be measured
via transport; for this purpose one should suppress the
surface transport by attaching ferromagnets on the surface.

From the spin-resolved angle-resolved photoemission
spectra, all the TIs observed so far, such as Bi1�xSbx
[21,22], Bi2Se3 [9], and Bi2Te3 [9], have nM ¼ �1. To
realize the protected interface states in experiments dis-
cussed in this Letter, one needs to find a TI with nM ¼ þ1,
i.e., the surface Dirac cone with negative velocity, and the
spins on the upper cone is in the counterclockwise direc-
tion in the k space. It is an interesting issue to search for
such TIs. The Dirac velocity v is nothing but the coeffi-
cient � in the Rashba spin-splitting term �ð� � kÞz in the
Hamiltonian. The Rashba coefficient � originates from an
integral of a sharply peaked function near the nuclei, which
rapidly varies between positive and negative values
[23,24]. Therefore, we expect that it can change sign in
principle. The sign of the mirror Chern number nM is also
related with the mirror chirality of the bulk Dirac
Hamiltonian describing the bands near the bulk gap [11].
Because the mirror chirality governs the sign of the g factor
which can be negative or positive as a result of the spin-
orbit coupling, one may well expect that in some materials
nM can become þ1.

In conclusion, we study refraction phenomena on the
junction between the two TI surfaces with different veloc-
ities. The resulting reflectance and transmittance reflect the
backscattering-free nature of the surface states of TIs.
When the velocities of the TI surface states for the two
TIs have different signs, we show that the gapless states

appear on the interface. The existence of the gapless states
is shown by using the mirror Chern number, and thus is
topologically protected by the mirror symmetry.
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