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We evaluate the thermodynamic properties of the 4-state antiferromagnetic Potts model on the Union-

Jack lattice using tensor-based numerical methods. We present strong evidence for a previously unknown,

‘‘entropy-driven,’’ finite-temperature phase transition to a partially ordered state. From the thermody-

namics of Potts models on the diced and centered diced lattices, we propose that finite-temperature

transitions and partially ordered states are ubiquitous on irregular lattices.
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The q-state Potts model has an essential role in the
theory of classical critical phenomena and phase transi-
tions [1]. Antiferromagnetic Potts models are rich and
complex, displaying many different types of behavior as
a function of q and of lattice geometry, and the search for
guiding principles continues. Key questions include
whether the model has a phase transition, if this occurs at
finite temperature, the nature of the low-temperature phase,
and the universality class of the transition.

In the Landau theory of phase transitions, these are
described by an order parameter. Minimizing the energy
at low temperatures requires the order parameter to be
finite everywhere. However, in systems with extensive
ground-state degeneracy [2], of which the best-known
example is ice [3], the nonzero entropy at zero temperature
may cause a different type of ordered state. A partial order,
involving only some of the lattice sites, is stabilized by
minimization of energy in combination with maximization
of entropy. This ‘‘entropy-driven’’ transition can occur at a
finite temperature. Such partial order is known in both
frustrated [4,5] and unfrustrated [6] systems. In the latter
case, partial order arises purely due to configurational
entropy effects, and the q ¼ 3 antiferromagnetic Potts
model on the diced lattice provides an excellent example
of the associated phase transition [7].

In this Letter we pursue the physical origin of the finite-
temperature phase transition in two-dimensional (2D)
q-state Potts models. Although these systems have no exact
solution for q > 2, we employ tensor-based numerical
methods to obtain hitherto unavailable thermodynamic
quantities. We show that the q ¼ 4 Potts model on the
Union-Jack lattice exhibits a finite-temperature transition
to a state of partial order. We characterize this transition
by computing the entropy, specific heat, and magnetiza-
tion, quantities we also use to provide a complete discus-
sion of the q ¼ 3 model on the diced lattice. We propose
that finite-temperature transitions and partially ordered
states are a general property of Potts models on irregular
lattices.

Let the q states of the Potts model for lattice site i be
labeled �i ¼ 0; 1; . . . ; q� 1. In the Hamiltonian,

H ¼ J
X

hi;ji
��i�j

�H
X

i

��i;0; (1)

J > 0 corresponds to the antiferromagnetic case and a field
H is coupled to one of the q states. We consider only a
single coupling J on every bond, and begin with H ¼ 0.
We employ tensor-based numerical techniques developed
recently by a number of authors [8–12] to compute the
partition function Z to high accuracy, and hence to obtain
the required thermodynamic quantities.
We illustrate the methods by focusing on the Union-Jack

lattice [Fig. 1(a)]. The partition function

Z ¼ Tre��H ¼ X

f�ig

Y

h

e��Hh ; (2)

h represents the structural unit [Fig. 2(a)] and

H UJ
h ¼ Jð��1�2

þ ��2�3
þ ��3�4

þ ��4�1
Þ=2

þ Jð��1�5
þ ��2�5

þ ��3�5
þ ��4�5

Þ: (3)

The tensor Th ¼ e��Hh is defined [8,11] by summing
over the C-sublattice sites �5 and introducing the
bond (or dual-lattice) variables � ¼ modð�1 � �2; qÞ,

(a) (b) (c)

FIG. 1 (color online). (Color online) (a) Union-Jack lattice.
Sites in sublattices A (red circles) and B (blue) have coordination
numbers zA ¼ zB ¼ 8, while those in sublattice C (yellow) have
zC ¼ 4. (b) Diced lattice. A sites (red) have zA ¼ 6, while B sites
(blue) have zB ¼ 3. (c) Centered diced lattice: zA ¼ 12 (red),
zB ¼ 6 (blue), and zC ¼ 4 (yellow).
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� ¼ modð�2 � �3; qÞ, � ¼ modð�3 � �4; qÞ, and � ¼
modð�4 � �1; qÞ [Fig. 2(a)]. The partition function

Z ¼ X

����...

T����T���� . . . (4)

becomes a product of tensors defined on the square lattice
[Fig. 2(b)]. The tensor renormalization group (TRG) [8,10]
is a real-space coarse-graining method, in which the pre-
cision of the tensor contraction is greatly enhanced by
simultaneous renormalization of an ‘‘environment’’ block
[10,11]. Infinite time-evolving block-decimation (iTEBD)
[12] is a projection method, in which projecting the trans-
fer matrix sufficiently many times on a random vector
gives very accurately its largest eigenvalue. Both methods
simulate the properties of an infinite system, the truncation
being performed in the size D of the rank-4 tensor T����,

which thus determines the precision. With an accurate
partition function, we then obtain all other thermodynamic
information.

One guiding principle for the antiferromagnetic Potts
model in 2D concerns the existence of a critical q, qcðLÞ,
for each lattice geometry L. At zero temperature, neigh-
boring sites may not have the same ‘‘color’’ �i (Fig. 1),
making the model equivalent to a vertex coloring problem.
By exploiting the Dobrushin Uniqueness Theorem [13],
Salas and Sokal proved [14] that the correlation function
decays exponentially at all temperatures (including zero)
for sufficiently large q, meaning a disordered ground state
and no phase transition. For sufficiently small q, ordered
ground states usually exist [7,15]. For q ¼ qcðLÞ, T ¼ 0 is
a critical point; this situation is common for many integer q
values, including on the square [15], kagome [16] (both
qc ¼ 3), and triangular (qc ¼ 4) lattices [17].

In terms of qc, the diced lattice [Fig. 1(b)] is anomalous.
Despite an average coordination number of 4, the model
with q ¼ 3 has a finite-temperature phase transition, hence
qc > 3. This transition is driven [7] by the entropy avail-
able from the irregular nature of the lattice, meaning that
there are more sites of one type than of others. The low-
temperature phase can be ordered on the A sublattice (for

example, �i ¼ 0) but not on B (�i ¼ 1 or 2), creating a
partially ordered state. We investigate the hypothesis that
such behavior is generic for irregular lattices. We do this
both by seeking an explicit new example of a finite-
temperature transition, which leads us to consider the
Union-Jack lattice, and by analyzing in detail the thermo-
dynamic properties of irregular lattices.
We begin by considering the q ¼ 4 Potts model on the

Union-Jack lattice. This centered square lattice is tripartite
[Fig. 1(a)]. While the q ¼ 2 (Ising) model shows partial
order and the q ¼ 3 model is perfectly ordered, the q ¼ 4
model may be expected from its average coordination
(z ¼ 6) to have zero-temperature order. To address the
question of a phase transition occurring instead at finite
temperature due the irregular nature of the lattice, we focus
directly on the specific heat, shown in Fig. 3(a). The small
but clear gap in the curve [inset, Fig. 3(a)] indicates a
discontinuous second derivative of the free energy, and
hence a second-order phase transition. We have performed
detailed calculations to delineate the nature of the discon-
tinuity over a range of D values, and exploit the linear
scaling behavior of the matrix-product state with 1=D [18],

(a) (b)

FIG. 2 (color online). (a) Schematic representation of the
tensor T, obtained by integrating over the C-sublattice sites
and performing the dual transformation. (b) The Union-Jack
lattice (dashed lines) is transformed to the dual square lattice
(solid lines) on which the tensor T is defined.

FIG. 3 (color online). (a) Entropy and specific heat for the
q ¼ 4 Potts model on the Union-Jack lattice, computed with
D ¼ 800. Thin, green lines denote the zero- and infinite-
temperature limits of the entropy. Inset: specific-heat disconti-
nuity near Tc. (b) Linear fit of Tc with 1=D, which extrapolates
to Tcð1Þ ¼ 0:339ð1Þ. The error bar denotes the upper and lower
temperatures at the discontinuity.
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shown in Fig. 3(b), to obtain the precise result Tc ¼
0:339ð1Þ. Thus the q ¼ 4 model on the Union-Jack lattice
does indeed possess a finite-temperature phase transition,
becoming only the second known Potts model in this
category.

This transition was to our knowledge neither known
beforehand nor even predicted. It underlines directly the
importance of the irregular nature of a 2D lattice in
promoting a finite zero-temperature entropy and partial
order in the ground state. Our result is connected to several
other models in statistical mechanics. First, some Potts
models may be mapped to a height model, and when this
mapping exists the system is critical or ordered at zero
temperature [7,15]. As expected from our result, such a
height map does exist for the q ¼ 4 Union-Jack lattice
[17]. Second, at zero temperature, the q ¼ 4 Potts model
on the Union-Jack lattice can be mapped directly to the 3-
bond-coloring problem on its dual, the 4–8 lattice [17]. The
total number of states on the 4–8 lattice is known [19], and
hence the zero-temperature entropy of the Union-Jack
lattice should be SUJð0Þ ¼ 2 lnW4–8 ¼ 0:430 997, with
W4–8 ¼ 1:24 048. Our numerical result is 0.430 999
[Fig. 3(a)].

Third, the bond-coloring problem on the 4–8 lattice is
further equivalent to a fully-packed loop (FPL) model (on
the same lattice), obtained by considering all configura-
tions of noncrossing closed loops. The FPL partition func-
tion is Z ¼ P

Gn
NL , where n is a loop fugacity (weight),NL

is the number of loops, and G denotes all loop configura-
tions. Like the FPL model on the square and honeycomb
lattices, n ¼ 2 for the 4–8 lattice, but unlike these cases the
4–8 lattice is not critical [20]. This is again consistent with
our demonstration that long-range order is present at finite
temperatures. Finally, the 3-bond-coloring model on the
4–8 lattice is also equivalent to a three-vertex coloring
model on the square-kagome lattice [17], and thus the
q ¼ 3 Potts model on the square-kagome lattice is equiva-
lent at zero temperature to the q ¼ 4 Potts model on the
Union-Jack lattice.

For a full understanding of the finite-temperature tran-
sition and the partially ordered ground state, we turn to the
thermodynamic quantities extracted from the partition
function. For a heuristic understanding of the partially
ordered state, we begin with the entropy. The q ¼ 3 Potts
model on the diced lattice [Fig. 1(b)] is the prototypical
model in this class for a ground state with partial order
(Ref. [7] and references therein). As above, if the minority
sites order, the majority sites would have two remaining
degrees of freedom (d.o.f.s), giving an entropy per site
SD0 ð0Þ ¼ 2 ln2=3 ¼ 0:462 098. The entropy we compute

is shown in Fig. 4, and its low-temperature limit is SDð0Þ ¼
0:473 839. This minor deviation indicates that an ideal
A-sublattice order is rather close to the true ground state,
with only small contributions from states of imperfect A
order. This partial order is destroyed at Tc by thermal

fluctuations, and at high T, where all sites may explore
all three d.o.f.s, the entropy approaches ln 3.
Analogous considerations for the Union-Jack lattice

give again a maximum entropy if the high-coordination
(minority) sites order. This order may involve sublattices
A, B, or both A and B simultaneously. In the last case, if
�A ¼ 0 and �B ¼ 1, the d.o.f. in �C ¼ 2, 3 yields a total

of 2N=2 states. If only A sites are ordered (�A ¼ 0, �B,
�C ¼ 1, 2, 3), the B and C sublattices form a q ¼ 3 Potts
model on the decorated square lattice. Let the zero-
temperature entropy of this model be SDSLð0Þ ¼ ln	 , then

the number of states with partial order on A only is 	3N=4,

and these will dominate the total if 	 > 22=3 ¼ 1:587 401.
We have calculated separately the value SDSLð0Þ ¼
0:561 070, whence 	 ¼ 1:752 547. Thus the ground state
is indeed composed primarily of states with one ordered
sublattice. The discrepancy between 3SDSLð0Þ=4 ¼
0:420 802 and our result [Fig. 3(a)], SUJð0Þ ¼ 0:430 999,
can be ascribed to states with neither A nor B order. The
high-T entropy approaches ln 4.
We now return to the specific heat and to the phase

transition. Results for the q ¼ 3 model on the diced lattice
are shown in Fig. 4. The transition point may be obtained
with high precision and we find Tc ¼ 0:505ð1Þ, a value
consistent with the alternative approach used in Ref. [7].
The peak feature is much more pronounced than in Fig. 3.
This reflects the relative lack of competition between
different types of partially ordered state in the diced lattice
(A order only) as compared to the Union-Jack lattice (A or
B order). We note that both transitions occur near the peak
of the specific-heat curve at T � J=2, which is the charac-
teristic energy scale of the system, and we suggest that this
behavior is generic: a finite-temperature transition must
occur at a value Tc=J �Oð1Þ, and cannot occur arbitrarily
close to T ¼ 0.

FIG. 4 (color online). Solid lines: entropy SðTÞ and specific
heat CðTÞ for the q ¼ 3 Potts model on the diced lattice,
calculated with D ¼ 100. The dotted line marks the result of
Ref. [7]. Thin, green lines mark the low- and high-T entropy
bounds. Dashed lines: results for the q ¼ 4 Potts model on the
centered diced lattice.
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The other thermodynamic quantities we illustrate here
are the magnetization and susceptibility. By considering
finite fieldsH in the Hamiltonian of Eq. (1), we deduce the
spontaneous magnetization on sublattice A of the Union-
Jack lattice [red circles in Fig. 1(a)], M ¼ P

i2A��i¼0
=N,

from the expression

M ¼ � @

@H
lim
N!1

1

N
lnZ; (5)

computed with a very small external field (H ¼
0:000 025). The results (Fig. 5) show a clear step around
Tc. The high-T limit ofM for a completely disordered state
is MUJð1Þ ¼ 1

4 � 1
4 ¼ 1

16 . The low-T limit for a state of

perfect A-sublattice order would be MUJ
0 ð0Þ ¼ 1

4 , and in

fact this value must be obtained for temperatures below the
energy from the applied field. However, it is clear from our
entropy calculation that the ground state is not one of
perfect A order. We find that the magnetization exhibits a
related zero-temperature deviation, tending towards the
value MUJð0Þ ¼ 0:2232. This deviation is somewhat
smaller for the diced lattice, where the ideal magnetization
would be 1=3 and our numerical result is 0.3192. Returning
to the transition, our calculations show the same behavior
as in Fig. 3(b), that Tc falls slowly with increasing D. The
best qualitative indication of the transition is provided by
the magnetic susceptibility, 
 ¼ @M=@H, which has a
robust peak (inset, Fig. 5). The critical exponents of these
quantities may also be computed by the same techniques,
but the highly numerically demanding task of obtaining
adequate precision remains in progress.

When the discussion of 2D antiferromagnetic Potts
models is framed in terms of qcðLÞ, the diced lattice is
the only known system with an average z of 4 but qc > 3.
The Union-Jack lattice is now revealed as the only system
known with an average z of 6 but qc > 4. In fact this is the
largest value known for any planar lattice. Phase transitions

in different Potts models belong in general to different
universality classes. While the universality class for the
q ¼ 4 Potts model on the Union-Jack lattice remains under
investigation, the partial order we find breaks both the
4-state (Potts) symmetry and the (Ising-like) sublattice
symmetry between A and B.
We end this discussion with the logical extension of our

analysis. The 11 regular lattices (all sites equivalent) ob-
tained by tiling the plane with regular polygons are known
as Archimedean. Among their dual lattices, three are regu-
lar and the other eight are irregular. This is the set of Laves
lattices, which includes the diced and Union-Jack lattices.
We propose that for each Laves lattice with an integral
average coordination number, there exists a Potts model
with integral q that would feature a zero-temperature tran-
sition on a regular lattice of the same coordination, but has
a finite-temperature transition, to a state of partial order, on
this irregular lattice. As an example we cite the Dð4; 6; 12Þ
lattice, or centered diced lattice, shown in Fig. 1(c). This
tripartite lattice has an average coordination z ¼ 6. Indeed
we find (Fig. 4) that a q ¼ 4 Potts model on this lattice has
a very robust finite-temperature phase transition to a state
of predominantly A-sublattice order. Demonstrating the
existence of the same physics on a third lattice in this class
very strongly reinforces our proposal.
To conclude, we have demonstrated the existence of a

previously unknown, finite-temperature phase transition in
the q ¼ 4 Potts model on the Union-Jack lattice. This
establishes the essential property that the presence of in-
equivalent sites, leading to a nontrivial entropy, drives the
finite-temperature transition and confers unusually high
values on qc. We find this type of transition on other
irregular lattices in two dimensions. Our analysis under-
lines the utility of tensor-based numerical methods in in-
vestigating the physics of classical statistical mechanical
models.
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