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We analyze the possibility to prepare a Heisenberg antiferromagnet with cold fermions in optical

lattices, starting from a band insulator and adiabatically changing the lattice potential. The numerical

simulation of the dynamics in 1D allows us to identify the conditions for success, and to study the

influence that the presence of holes in the initial state may have on the protocol. We also extend our results

to two-dimensional systems.
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Ultracold atoms trapped in optical lattices offer a unique
possibility to experimentally explore strongly correlated
states of quantum matter. Currently, one of the main ex-
perimental challenges in this field is the preparation of a
Heisenberg antiferromagnet (AFM), which represents the
necessary next experimental step toward a true quantum
simulator of the fermionic Hubbard model [1].

Although the creation of a fermionic Mott insulator (MI)
has recently been reported [2,3], the realization of antifer-
romagnetic order requires temperature and entropy signifi-
cantly lower than presently achieved [4,5], despite many
existing proposals for direct cooling within the lattice
[6]. An alternative to the direct generation is to use an
adiabatic protocol [7,8]. In such a scheme, it is desirable
to tune interactions initially to give a ground state with very
low entropy. Then, they are changed slowly, until the
HeisenbergHamiltonian is realized at the end. If the process
is adiabatic, the entropy will stay low and the final state will
be the desired AFM. The following questions immediately
arise:What are the conditions to achieve adiabaticity?What
occurs if these conditions are too restrictive and cannot be
met? And, how will the protocol be affected by a finite
temperature and the presence of a harmonic trap?

In this Letter, we propose a specific adiabatic scheme
and analyze these issues. Our adiabatic protocol is the first
to attain an AFM with ultracold fermions within feasible
timescales, even in the presence of experimental imperfec-
tions. Additionally, we show that it is possible to realize
antiferromagnetic order on a part of the sample in a shorter
time than required for the whole system. Finally, we simu-
late the dynamics of holes to demonstrate their destructive
effect on the AFM and devise a strategy to control them.

The initial ground state of our protocol is a band insu-
lator (BI), which is transformed first to an array of de-
coupled singlets and finally to the AFM, by adiabatically
changing the depth of two superimposed optical lattices. A
BI is easier to prepare with low entropy than a MI for two
reasons. On the one hand, its energy gap is given by the
band gap, which is much larger than the interaction energy

(MI gap) and favors a redistribution of the entropy towards
the surrounding metallic shell [9]. On the other hand, the
preparation can be done using weakly or noninteracting
atoms, thereby avoiding the long timescales associated
with mass and entropy transport at higher interactions [10].
For the one-dimensional case, we simulate the fermionic

t-J model with matrix product states (MPS) [11]. We first
identify the adiabatic conditions that allow the preparation
of the antiferromagnetic state in an ideal case with no
defects. Second, we study how these conditions are relaxed
if one imposes that antiferromagnetic order is only ob-
tained on a subset of fermions around the center of the
sample. We observe that, when restricted to a middle
sublattice, adiabaticity is determined by an effective gap
related to this sublattice and not by the gap of the total
system. Third, we include the presence of holes in the
initial state, expected to occur in real experiments due to
the finite temperature. The large initial energy of the holes
can, in principle, destroy the AFM as they delocalize inside
the sample. We find that, if the holes are initially located at
the outer part of the sample, as expected in an experiment,
a tradeoff can be reached between the degree of adiaba-
ticity of the process and the distance the holes travel inside
the chain, so that the antiferromagnetic order is still pro-
duced in the center. Moreover, we show that a harmonic
trap can prevent the destructive effect of holes by confining
them to the outside of the sample. Finally, via projected
entangled pair states (PEPS) [12,13], we complement our
analysis with a simulation of the two-dimensional t-J
model of hardcore bosons with antiferromagnetic interac-
tion. This setting is easier to investigate numerically than
the corresponding 2D fermionic system and provides evi-
dence that the physics studied in the one-dimensional case
can be extrapolated to understand the conditions of an
equivalent scheme in 2D.
In the following, unless stated otherwise, we will focus

on the one-dimensional case and consider a two compo-
nent Fermi gas in an optical lattice. The physical setting
consists of two adiabatic stages, depicted in Fig. 1. The
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first transition has already been realized experimentally
[14–16] and can be straightforwardly described, so that
we can focus on the second one and take Fig. 1(b) as the
initial state for our theoretical study. In this situation, the
system is governed by a one-band t-J model. This model
emerges in the limit of strong interactions from the
Hubbard model, which describes ultracold atoms in optical
lattices [17]. We consider a bipartite t-J Hamiltonian with
different couplings for even and odd links, H ¼ He þHo,
where

H‘ ¼ �t‘
X

k2‘;�¼";#
ðcyk;�ckþ1;� þ H:c:Þ

þ J‘
X

k2‘

ðSkSkþ1 � nknkþ1

4
Þ;

‘ ¼ e; o:

(1)

The superexchange interaction J‘ and the tunneling pa-
rameter t‘ are related through the on-site interaction U as
J‘ ¼ 4t2‘=U. We fix the couplings on the even links, te ¼ t
and Je ¼ J, and choose a linear ramping of the super-
exchange interaction on the odd links, over total ramping

time T so that Joð�Þ ¼ J � �=T and toð�Þ ¼ t
ffiffiffiffiffiffiffiffiffi
�=T

p
, for 0 �

� � T [18]. In the following, we set J ¼ 1. A harmonic
trap is included by adding a term Vt

P
kðk� k0Þ2nk to

Eq. (1).
The ramping time from Fig. 1(b) to 1(c) needs to be long

enough such that the final state is close to the true AFM.
The required time to ensure a certain degree of adiabaticity
can be seen to scale as T / 1=�2 [19], where � is the
minimum gap between the ground and the first excited
state during the evolution. A closer look at the relevant
energy levels reveals that in this adiabatic transition the gap
decreases monotonically from J to the Heisenberg gap,
which vanishes in the thermodynamic limit, and there is no
phase transition occurring in between [20].

The adiabaticity of the evolution and the final antiferro-
magnetic order can be probed by two experimentally ac-
cessible observables. The first one, the squared staggered
magnetization, M2

stag ¼ 1
N2

P
N
l;m¼1ð�1ÞlþmhSlSmi, is the

antiferromagnetic order parameter and can be determined
by noise correlations [21]. The second one is the double
well singlet fraction, P0 ¼ 2

N

P
k2eð14 � hSkSkþ1iÞ. Since

the initial state, Fig. 1(b), has a pure singlet in each double
well, measuring P0 � 1 at the end indicates a change in the
state. The generation and detection of singlet and triplet
dimers in double well lattices has been recently reported
[16]. Whereas the squared staggered magnetization is ex-
perimentally detected over the whole sample and captures
information on long-range correlations, the singlet fraction
can be determined in situ and hence allows us to probe
parts of the sample. For the Heisenberg antiferromagnetic
chain in the thermodynamic limit, these observables take
on the values M2

stag;TD ¼ 0 and P0;TD � 0:693 [22], while

in 2D M2
stag;TD � 0:0945 and P0;TD � 0:585 [23]. Notice

that for the finite 1D systems considered in this work,M2
stag

does not vanish, but has a sizable value, comparable to the
2D thermodynamic limit [24].
Absence of holes.—Using the numerical simulation of

the chain dynamics with MPS, we investigate the state at
the end of the protocol for varying ramping time. To
characterize the antiferromagnetic order independently
of the system size, we define the relative quantities
m2ðTÞ :¼M2

stagðTÞ=M2
stag;AFM, p0ðTÞ :¼P0ðTÞ=P0;AFM, and

espinðTÞ :¼ EspinðTÞ=Espin;AFM, where the denominator is

the expectation value of the observable in the true AFM
for a given lattice [24]. For the last quantity, Espin is the

expectation value of the spin term in the total Hamiltonian
of Eq. (1).
Figure 2 shows our results for an ideal case with no holes

in the initial state, with all relative quantities converging to
1, as expected, in the limit of large T [Figs. 2(a) and 2(b)].
The ramping time necessary to reach a certain relative
magnetization m2 grows with the system size. If we study,
given T, which is the largest system for which a fixed value
m2 can be achieved [Fig. 2(a) inset], we findN2 / T, which
is consistent with the adiabaticity condition for a gap
closing like � / 1=N [25].
For very long chains, the required T might not be

experimentally feasible. Remarkably, this does not exclude
the preparation of antiferromagnetic order on large sys-
tems. We may evaluate the magnetization over a sublattice
in the center of the sample. If, given T and N, we ask for
the largest sublattice size L for which the magnetization
reaches a fixed value [Fig. 2(c)], we find a scaling T / L2,
as governed by an effective local gap, and not by the gap of
the total system. In contrast to m2, the observables p0 and
espin do not depend onL [Fig. 2(d)]. This can be understood

from the fact that p0 and espin are determined by a two-site

observable SkSkþ1 averaged over a sublattice of length L,
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FIG. 1 (color online). The proposed adiabatic protocol. First, a
BI in a lattice with depth V1 (a) is transformed to a product of
singlets j�i (b) by slowly switching on a second lattice with
depth V2 and half the original wave length. Then, by lowering
the barrier V1 ! 0, the system turns into an AFM (c).
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whereasm2 is a true L-site observable, and thus effectively
probes the adiabaticity on the sublattice. These observa-
tions can be addressed analytically by means of spin wave
theory [26]. The experimental consequence is that with a
large sample, high values of m2 can be obtained in short

ramping times T on small parts of the system, L / ffiffiffiffi
T

p
.

Effect of holes.—In a real experiment, the finite tem-
perature causes the sample to be in a thermal mixture. As a
consequence, localized holes will be present in the initial
state, Fig. 1(b). Since the double wells are decoupled, the
wave function of a hole will be an equal superposition of
being in the left and in the right side of a single double
well. Our simulation reveals that holes have a highly
destructive effect on magnetic order. As seen in Fig. 3(a),
a few holes initially located on the boundary of the sample
are enough to cause a dramatic reduction of the final
staggered magnetization.

We observe that the dynamics of holes can be qualita-
tively well understood using a simplified picture, in which
the spreading of an initially localized hole, propagating in
an antiferromagnetic background, is modeled by a free
particle. This picture is accurate in the limit t � J, when
the spin term in Eq. (1) is negligible. We checked that it is
also valid in the whole experimentally reasonable parame-
ter regime by comparing the behavior of single holes to
that of free particles with the same initial wave function

[26]: for the relevant range of times and tunneling values,
2 � t � 8, the hole spreads like a free particle with a
maximal velocity v ¼ 2t. In the case of small t ¼ 2, a
hole with higher initial energy causes a higher spin exci-
tation, while for a large t ¼ 8, the hole excites the spin
background by�Espin � 0:5 in the beginning, independent

of its initial kinetic energy. This can be understood by
assuming a simple classical Néel background, where the
delocalization of a hole, initially positioned at a boundary,
breaks up exactly one antiferromagnetic bond. This as-
sumption should become a good approximation for the
hole dynamics in the regime t � J, where the timescale
of the delocalization is much faster than the timescale of
the reacting spin background. In all cases, the squared
staggered magnetization is reduced substantially during
propagation of the hole until it reaches a minimum after
the hole has travelled once over the whole sample. We
found that the magnetization reduction depends only
weakly on the initial kinetic energy, and on t, but it depends
strongly on the number of holes in the sample.
The simplified free particle picture allows us to interpret

the results from Fig. 3(a). In particular, the strong magne-
tization drop around T � 8 indicates the arrival of holes
at the middle sublattice. We can roughly predict this arrival
time from the spreading of a free particle wave function,
which, after time T, will have covered 4

3 t � T sites, taking

the ramping of the lattice into account. We observe that the
magnetization for a given sublattice L behaves like in
Fig. 2(c) only for short ramping times, while the region
is hole-free, until the holes reach the sublattice [Fig. 3(a),
inset].
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FIG. 3 (color online). Effect of holes and harmonic trap. (a)m2

as a function of the ramping time T, evaluated on a sublattice of
length L ¼ 42 for N ¼ 86, without holes (thin solid line), and
with initially 2 holes at each boundary (thick solid line), and
t ¼ 2. The inset shows the largest sublattice size L reaching
m2 ¼ 0:85 at ramping time T, for the two cases of the main plot,
and the size of the hole-free region (dashed red line). (b) m2

evaluated on a middle sublattice of length L ¼ 82 for N ¼ 102,
with no holes (thin solid line), and with initially 10 holes at each
boundary and a harmonic trap of strength Vt ¼ 0:004 (dash-
dotted green line), 0:006 (dashed red line), and 0:02 (solid blue
line), and t ¼ 3. For Vt ¼ 0:2 (not shown) the exact behavior of
the ideal case is recovered. Again, the inset shows the largest
sublattice size L reaching m2 ¼ 0:85 at ramping time T, for the
cases of the main plot. All results were obtained with MPS of
bond dimension D ¼ 60 and Trotter step �t ¼ 0:02 [29].
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FIG. 2 (color online). Absence of holes. (a), (b) m2, p0, and
espin as functions of the ramping time T, for chain length N ¼ 22

(solid blue lines), 42 (dashed red lines), 62 (dash-dotted green
lines), and 82 (dash double-dotted brown lines). The inset of (a)
shows the squared size N2 of the longest chain reaching a fixed
m2 ¼ 0:85 at ramping time T, and reveals the scaling T / N2.
(c), (d) Same quantities as above, evaluated on sublattices of
length L ¼ 22 (solid blue lines), 42 (dashed red lines), and 62
(dash-dotted green lines) for N ¼ 82. Now, the inset of (c) shows
the squared size L2 of the largest sublattice reaching m2 ¼ 0:85
at ramping time T, and reveals the scaling T / L2. All results
were obtained with MPS of bond dimension D ¼ 60 and Trotter
step �t ¼ 0:02 [29].
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Harmonic trap.—The simplified picture described above
points out that the negative effect of holes can be controlled
by the presence of a trap. An external potential changes
sign for a hole and effectively turns into an inverse trap,
capable of confining the holes to the outer parts of the
chain. The trap strength should be chosen as large as
possible without exceeding the on-site interaction U,
what would destroy the MI Fig. 1(c).

The results of the dynamics within the harmonic trap are
shown in Fig. 3(b). From energy considerations, a hole
delocalizes at most by �2t [24]. As the trap strength is
increased, the holes get more localized on the outside. As a
consequence, the magnetization of the total sample in-
creases, and the behavior of the hole-free case is recovered.

Two-dimensional case.—For the 2D case, the adiabatic
setting consists of an array of initially decoupled chains
like Fig. 1(b), connected by a transverse lattice with the
time-dependent couplings Jo and to. Different to the 1D
case, this system exhibits a phase transition in the thermo-
dynamic limit at Jo � 0:5 [20].

Although the numerical simulation of the 2D setting is
much more demanding than the one for chains, we can
relatively easily obtain results for hardcore bosons on
lattices of moderate size. In the absence of holes, the
bosonic and fermionic t-J models are equivalent, and our
simulations serve to test our protocol on a 2D system.
Similarities between both models under inclusion of holes
are a subject of current research [27], but our simulations
can still provide a qualitative indication of the controlling
effect of the trap. It is worth noticing that the AFM can also
be realized with ultracold bosons [28].

In the ideal case of no holes, we observe [Fig. 4(a)] that,
whereas the energy converges quickly, the magnetization
does not, and thus we cannot claim convergence to the
true AFM within the numerically accessible ramping
times studied here. Remarkably enough, we find that for

a 10� 10 lattice, a significant magnetization value m2 is
obtained in times of the same order of magnitude as for a
chain of length 10, suggesting that the generation of anti-
ferromagnetic order on much larger 2D lattices will be
experimentally possible within reasonable timescales.
Upon hole injection, a similarly dramatic magnetization
reduction is observed [Fig. 4(b)] which can be controlled
by the presence of a harmonic trap, as in the 1D case.
Discussion.—We have proposed and analyzed an adia-

batic protocol, suitable to prepare an antiferromagnetically
ordered state in an optical lattice, even from an initial state
containing defects. The timescales for the finite systems
studied in this work lie well within the range of current
experiments. Furthermore, we have observed that antifer-
romagnetic order can be produced in a sublattice in times
governed only by its size.
This scheme offers several advantages over other pro-

posals. First, starting from a BI simplifies the preparation
of a sufficiently low entropy initial state. Additionally, the
initial ground state in Fig. 1(b) already features the final
SU(2) symmetry of the AFM, so that the number of excited
states to which the evolution couples is minimum, as
compared with an alternative proposal [8] with only U(1)
initial symmetry. Moreover, since hole doping is experi-
mentally feasible, the same procedure can possibly be used
to prepare the ground state with varying hole densities.
This would open the door to the experimental exploration
of open questions in condensed matter theory, ultimately
the existence of d-wave superconductivity in the t-J
model.
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