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The present study investigates the spatiotemporal variability in the dynamics of self-sustained super-

sonic reaction waves propagating through an excitable medium. The model is an extension of Fickett’s

detonation model with a state-dependent energy addition term. Stable and pulsating supersonic waves are

predicted. With increasing sensitivity of the reaction rate, the reaction wave transits from steady

propagation to stable limit cycles and eventually to chaos through the classical Feigenbaum route. The

physical pulsation mechanism is explained by the coherence between internal wave motion and energy

release. The results obtained clarify the physical origin of detonation wave instability in chemical

detonations previously observed experimentally.
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Self-sustained waves propagating through excitable me-
dia can give rise to complex patterns (e.g., spirals, cells,
target shapes) and generally show large spatiotemporal
variability in their dynamics. While subsonic wave propa-
gation is usually modeled by reaction-diffusion coupling,
supersonic self-sustained waves rely on the coupling be-
tween energy release in the media and the resulting me-
chanical waves (elastic, compression waves, etc.). The
latter class of waves will henceforth be called detonations,
in analogy to the self-sustained supersonic waves com-
monly encountered in reactive gases, combustion of dust
particles in air, and condensed phase energetic materials
[1]. Such detonations can also appear in media sustaining
thermonuclear reactions and have been hypothesized to be
the decomposition mode of white dwarfs undergoing su-
pernova explosions [2]. Such supersonic self-sustained
waves have also been observed in a wide variety of elastic
excitable media, such as Burridge-Knopoff models of fric-
tional sliding, electronic transmission lines, and active
optical waveguides [3]. Likewise, phase change waves
[4], traffic jams [5], and shallow water waves [6] also share
the same characteristics of detonations, whereby the arrival
of mechanical waves induces a change in the material state,
conducive to the release of energy, which, in turn, modifies
or sustains the wave motion.

A simple and elegant model for self-sustained super-
sonic reaction waves has been introduced by Fickett [7,8].
This model is known to reproduce qualitatively many
dynamic traits of chemical detonations, such as the struc-
ture of the self-sustained wave, initiation transients, and
response to boundary losses (see [8]). Its mathematical
simplicity offers a much simpler framework to study det-
onations than the reactive Euler equations, as is the case for
chemical detonations. Its simplicity also permits us to
consider this model as a unifying model to the wide variety
of waves in excitable media mentioned above. The present
study is an investigation of its spatiotemporal nonlinear

dynamics, which have not been addressed in previous
studies.
Indeed, in gaseous chemical detonations, experiments

have demonstrated the large spatiotemporal variability in
the wave propagation. In multiple dimensions, multiscale
cellular patterns have been observed [1], while, in a single
space dimension, a pulsating instability has been observed
[9]. Numerical simulations of the reactive Euler equations
used to model one-dimensional pulsating detonations have
shown the universality in the wave dynamics [10]. As the
sensitivity of the reaction rates is increased, stable travel-
ing waves become oscillatory, subsequently develop a
hierarchy of period-doubling bifurcations appearing ac-
cording to Feigenbaum’s scaling [11], and eventually be-
come chaotic. At present, because of the complexity of the
reactive Euler equations and resulting dynamics, neither
the mechanism of the one-dimensional pulsating instability
nor the reason for the universality in the period-doubling
detonation dynamics are understood. In this Letter, we
study the wave stability predicted by Fickett’s model
whose simplicity allows for analytical investigation of
period-doubling and chaotic dynamics.
Fickett’s mathematical model for detonations is an ex-

tension of the inviscid Burgers’ equation to the reactive
case; that is,

@t�þ @xp ¼ 0; (1)

@t�r ¼ rð�; �rÞ; (2)

where all fields are defined on ðx; tÞ. The model is formu-
lated in Lagrangian coordinates, where x denotes a mate-
rial coordinate, while t represents time [8]. The variable �
has the meaning of density in the reactive analogue. The
flux term p in (1) has the meaning of pressure; see [8]. For
simplicity, we choose the generic equation of state pro-
posed by Fickett; that is,
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p ¼ 1
2ð�2 þ �rQÞ: (3)

The available energy in the excitable medium is Q, and �r

denotes the progress variable of the energy process, rang-
ing from 0 (unreacted) to 1 (reacted). Equation (2) de-
scribes the evolution of the energy release progress for
each particle with Lagrangian coordinate x; a model for
this reaction term will be described below. Note that, by
setting Q to zero, one recovers the well-studied inviscid
Burgers’ equation [12].

More insight into the interplay between wave motion
and energy addition can be obtained by recognizing that
the system of equations (1) and (2) is hyperbolic. It can be
shown that the characteristic form can be written as

dp

dt
¼ rQ along

dx

dt
¼ �; (4)

d�r

dt
¼ r along

dx

dt
¼ 0: (5)

From (4), we deduce that the system exhibits waves prop-
agating forward with speed dx=dt ¼ �. The wave commu-
nicates changes in pressure amplitude only in the positive x
direction. The amplitude of the wave varies with the heat
addition Q at the rate r. Hence, the model describes the
physical property that waves may amplify in the presence
of energy release according to Rayleigh’s criterion, i.e., if
the energy release is in phase with the wave motion. The
second family of characteristics in (5) gives the rate of
energy release along a particle path. The physical picture
emerging is thus that the reactivity set out along particle
paths modifies the strength of waves propagating forward.
Through the coupling of the reaction rate (which we will
ascribe below) to wave strengths, the feedback loop is
closed. Note that, contrary to the reactive Euler equations
used to model chemical detonations in fluids, which admit
three sets of waves [13], the analogue predicts two, as rear-
facing pressure waves are absent. This fundamental sim-
plification permits us to analyze the detonation problem in
an analytically tractable system of equations, unlike the
reactive Euler equations.

The system admits a coherent self-propagating traveling
wave solution having the properties of a detonation [8].
Although the details are available [8], we briefly describe
its steady solution, as it serves as our starting point for the
stability analysis. We seek a traveling wave solution to the
system given by (1) and (2). The speed of the wave D can
be found in terms of the unreacted state (�0, �r0) in front of
the wave and the reacted state (�2, �r2) behind the wave.
For simplicity, and without any loss of generality, we set
�0 ¼ 0, �r0 ¼ 0, and �r2 ¼ 1 to model an irreversible
exothermic reaction. We also let �2 vary (i.e., the piston
problem; see Fickett and Davis [1]). Adopting the notation
½�� ¼ �2 � �0, the resulting wave speed can be found (see
[12]) from D ¼ ½p�=½�� ¼ ð�2

2 þQÞ=ð2�2Þ.

The self-sustained traveling wave solution corresponds
to the case where the forward propagating characteristic
trailing the wave cannot penetrate the wave structure and
essentially represents an event horizon. The speed of this
so-called limiting characteristic thus needs to be equal to
the detonation speed. Denoting this special case as the
Chapman-Jouguet case (by analogy to the terminology
used in chemical detonations [1]) with subscript CJ, we
require that �2 ¼ D ¼ DCJ, from which we obtain the CJ
speed of the detonation,

DCJ ¼
ffiffiffiffi

Q
p

: (6)

Since we are dealing with an inviscid system and the
medium develops shocks according to Burgers’ equation,
the detonation can be assumed to be led by an inert shock,
across which there is no energy release and the density and
pressure change discontinuously. We will denote the state
behind the shock with a subscript 1 (known as the
von Neumann state in the chemical detonations). For a
nonreactive shock satisfying the weak form of the inert
inviscid Burgers’ equation, we obtain �1 ¼ 2D.
The structure of the detonation wave across which en-

ergy is deposited at a finite rate is obtained by integrating
the governing equations. The steady wave solution can be
obtained by first introducing the change of coordinates
(� ¼ x�DCJt� x0, t

0 ¼ t) which defines a local coordi-
nate system moving with the steady detonation. Making
the formal change of variables and setting the time deriva-
tives equal to zero in order to obtain the steady solution, we
obtain

d

d�

�

1

2
�2 �DCJ�þ 1

2
�rQ

�

¼ 0; (7)

d

d�
ðDCJ�rÞ ¼ r: (8)

This system is integrated from the shock, with the inert
shock state � ¼ �1 and �r ¼ 0 as a boundary condition at
� ¼ 0, once the rate rð�; �rÞ is given.
In the present Letter, we propose and investigate a

reaction model that is sufficiently simple to permit us to
explain the unsteady period-doubling wave dynamics of
detonations and sufficiently rich to capture the main non-
linearity in traveling waves in excitable media, which is the
coupling between (shock) wave motion and exothermicity
induced by the shock. We thus extend the models intro-
duced in [8,14], for which instability was predicted from
linear stability analysis, to a simple generic two step
model. Following the leading shock, we assume the exis-
tence of a thermally neutral induction delay, whose dura-
tion depends on the strength of the shock. This is an
excellent assumption for activated chemical reactions [1]
but can represent the excitability of any medium.
Following the induction process, we assume an exothermic
reaction that proceeds at a state-independent constant rate.
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The latter choice was selected in order to decouple the
activation of the reactions with the duration of the exother-
mic stage, in order to clearly isolate the physical phe-
nomena governing wave motion and the instability
mechanism and avoid the singularity in [8] associated
with square wave detonations. The resulting generic
induction-reaction model we propose is thus

@t�i ¼ �KiHð�iÞe�½ð�=2DCJÞ�1�; (9)

@t�r ¼ Kr½1�Hð�iÞ�ð1� �rÞ�; (10)

where Ki and Kr are constants controlling the time scales
of the induction and reaction zones, respectively. The
Heaviside function Hð�Þ controls the timing of the onset
of the second exothermic reaction, which starts when the
induction variable �i reaches 0. Ahead of the shock, �i ¼ 1
and �r ¼ 0. We are also assuming that the reactions are
only activated by the passage of the inert leading shock.
The system to be solved is thus (1), (9), and (10).

The reaction model allows for direct analytical deriva-
tion of the steady traveling wave solution. Ahead of the
wave in the quiescent zone, we have � > 0, � ¼ 0, �i ¼ 1,
and �r ¼ 0. The induction zone terminates at �i ¼
�DCJ=Ki. In the induction zone, we have �i < � < 0,
� ¼ �1 ¼ 2DCJ, �i ¼ 1þ Ki=ðDCJ�Þ, and �r ¼ 0.
For a reaction order � < 1, the reaction layer terminates
at a finite distance from the shock given by �r ¼
�i �DCJ=½Krð1� �Þ�. In the reaction layer, we have

� ¼ DCJf1þ ½1þ ð1� �ÞKr=DCJð� � �iÞ�½1=2ð1��Þ�g and

�r ¼ 1� ½1þ ð1� �ÞKr=DCJð� � �iÞ�ð1=1��Þ.
The nonlinear stability of the traveling wave solution of

(1), (9), and (10) was investigated by numerical integration
starting with the steady traveling wave structure as the
initial condition. The numerical integration uses the frac-
tional steps method, whereby the hydrodynamic evolution
and reactive step can be performed separately. The hydro-
dynamic step uses an exact first-order Riemann solver.
Owing to the simplicity of the reactive model, the reactive
part of the governing equations is solved in closed form at
each time step. A grid resolution of 256 grid points per
detonation wave thickness was used, which ensured the

stability boundary was grid-independent with an accuracy
of �0:1 in the value of �. The results presented are for
parameters Q ¼ 5, Ki ¼ 1, Kr ¼ 2, and � ¼ 0:5. Below
the critical value � ¼ 5:7, the steady solution is stable and
propagated with the steady wave structure given above at
its constant CJ speed, given by (6). Above this critical
value, the traveling wave solution is unstable and develops
a stable limit cycle, as shown in Fig. 1. As � increases, the
amplitude of the pulsations also increases until a period-
doubling bifurcation occurs at � ¼ 6:9. Figure 2 shows the
bifurcation diagram. Further increases in � yield another
bifurcation at � ¼ 7:7, followed by subsequent bifurca-
tions occurring with smaller changes in �. Eventually, the
pulsations become chaotic, with isolated values of � for
which the dynamics have an odd period; one example is
shown in Fig. 1. This implies the onset of chaos [10]. The
sequence of period-doubling bifurcations and onset of
chaos is very similar to the nonlinear dynamics of chemical
detonations [10] and many other nonlinear systems. The
results thus clearly highlight that our simple detonation
model captures this universality observed in nonlinear
dynamics of complex systems.
The analogue model also allows for a straightforward

interpretation of the instability mechanism in detonations.
In order to study the nonlinear instability mechanism of the
proposed detonation analogue, we focused our attention on
the single mode limit cycle obtained for � ¼ 6:8. Figure 3
illustrates the evolution of the wave structure over approxi-
mately two oscillation periods, in the frame of reference of
the steady traveling wave. To visualize the dynamics, we
reconstructed an (arbitrary) discrete set of pressure waves
by integrating (4) starting from arbitrary locations. We
used a predictor-corrector method and interpolated on the
solution obtained above. The lead shock front of the deto-
nation corresponds to the locus where these characteristics
coalesce. Behind the oscillating lead shock are the two
zones of induction and reaction. Note that the finite (nu-
merical) dissipation at the discontinuity at the rear of the
reaction zone makes the characteristics bend somewhat
towards the reaction zone in a very narrow region. Away
from this region, by virtue of the characteristic Eq. (4), the
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FIG. 1. Shock amplitude evolution for different values of �.
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pressure waves have constant amplitude and speed every-
where except in the reaction zone, where they accelerate
owing to the heat release. By investigation of the character-
istic diagram of Fig. 3, the detonation wave structure can
be easily interpreted as the coherent wave structure formed
by the amplification of forward traveling waves. These are
amplified across the reaction zone and eventually reach the
hydrodynamic shock. Since the onset of the reactions is
controlled by the lead shock, the pressure waves continu-
ously see the same reacting field and the self-sustained
detonation phenomenon occurs.

The instability mechanism itself can be inferred from the
characteristic diagram shown in Fig. 3. First, one can note
that the oscillations of the leading shock provide a modu-
lation in the duration of the induction zone and location of
the reaction zone. This is due to the induction time sensi-
tivity on the shock state given in (9). As can be verified in
Fig. 3, the points when the shock is strongest (S) corre-
spond to the shortest induction times, which is communi-
cated along the particle paths (P). Likewise, the weakest

shocks (W) yield the longest induction times. Because of
this modulation in the onset of exothermicity, the accel-
eration and deceleration phases of the lead shock pulsa-
tions can be deduced. The amplification stage of the lead
shock corresponds to the arrival of pressure waves that
traveled in phase with the energy release zone, which can
be identified as the regions where the pressure waves travel
almost parallel to the reaction zone band. Likewise, the
deceleration phases correspond to the arrival at the lead
shock of waves traveling out of the phase with the energy
release zone. The waves traveling in phase with the energy
release amplify more and communicate an acceleration to
the lead shock. Since this occurs during the lead shock
amplification stage, the feedback accentuates the amplifi-
cation. Likewise, a decelerating shock provides a nonco-
herent interaction between the forward pressure waves and
exothermicity, further promoting the deceleration. In our
system, the coherent amplification can be obtained by
integrating (4) for a constant rate, which shows that the
amplification of a pressure wave is proportional with the
residence time of the wave in the energy release zone.
When a pressure wave stays in phase with an energy
release zone for longer times, it acquires the most ampli-
fication. The pulsation mechanism, which controls the
sequence of acceleration and deceleration phases, can
also be seen in Fig. 3. Following an acceleration stage,
the forward characteristics emanating from the rear of the
reaction zone only clip the reaction zone. They obtain very
little amplification and form the expansion waves (E). The
expansion waves immediately following the compression
waves provide the restoring mechanism for the instability.
Note that the same mechanism has been suggested to be at
play in chemical detonations [13,15], although the com-
plexity of the governing equations did not permit us to
clearly isolate these effects. The much simpler detonation
model suggested in the present study provides very similar
dynamics and permits a much more accurate physical
investigation of the physical mechanisms controlling the
instability, namely, the coherent amplification of forward-
facing waves modulated by the onset of reactions. This is
essentially Rayleigh’s criterion for (acoustic) wave ampli-
fication by coherent energy release.
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