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We show that thermal creep is at the origin of the recently discovered Leidenfrost ratchet, where liquid

droplets float on a vapor layer along a heated sawtooth surface and accelerate to velocities of up to

40 cm=s. As the active element, the asymmetric temperature profile at each ratchet summit rectifies the

vapor flow in the boundary layer. This mechanism works at low Reynolds number and provides a novel

tool for controlling gas flow at nanostructured surfaces.
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Liquid spilled on a hot surface rapidly evaporates. At the
Leidenfrost temperature well above the boiling point, how-
ever, one observes long-lived droplets that levitate due to
the excess pressure resulting from the permanent feed of
vapor at the bottom. Their contact-free suspension makes
such Leidenfrost droplets very mobile. Linke et al. ob-
served that, when placed on a millimeter-sized brass
ratchet, the droplets rapidly accelerate to a speed of about
10 cm=s [1]. Very recently, Lagubeau et al. found that the
same effect occurs for a piece of solid dry ice, and thus
is not related to properties of the liquid phase [2]. Even
more surprisingly, Ok et al. reported that reducing the
ratchet profile to 200 nm has little effect on the droplet
velocity [3].

Unlike other self-propulsion mechanisms based on
chemical or thermal gradients [4–8], this motion is not
directed along an applied field but rather arises from the
asymmetric surface structure of the solid support. This
sawtooth profile acts as a rectifier transferring momentum
on the interstitial vapor; the resulting gas flow advects the
floating Leidenfrost droplet. The experimental findings
[1–3] suggest that there is a common principle that works
for both liquids and solids, and independently of the height
of the ratchet profile. Several ideas have been put forward,
relying on nonuniform Laplace pressure and Marangoni
forces in the droplet, surface vibrations, or rectification of
the radial vapor flow through the nonlinear term of the
Navier-Stokes equation [1–3,9]; yet none of them explains
all of the mentioned experiments. In particular, the sub-
micron ratchets of Ok et al. [3] exclude nonlinear hydro-
dynamics as the dominant mechanism, as illustrated in the
left-hand panel of Fig. 1: For small profile D, the gas
velocity and the effective Reynolds number Re in the
ratchet layer are much smaller than at midheight where
Re� 1 [2]; thus rectification is expected to disappear for
D � h0, whereas the data of Ok et al. rather show the
opposite behavior.

In his 1879 attempt to explain Crookes’ radiometer
experiment and building on Reynolds’ theory for thermal
transpiration [10], Maxwell showed the existence of
thermal-creep velocity along a solid-gas interface [11],

vC ¼ 3

4
�
rkT
T

; (1)

where � is the kinematic viscosity of the vapor andrkT the

parallel component of the temperature gradient. Kinetic
theory relates this gas flow to the nonuniform density and
velocity distribution: Molecules coming from the cold side
and hitting the surface at a given point are more frequent
but carry lower momentum than those from the hot side,
thus resulting in an off-diagonal component of the surface
stress and the boundary velocity vC [11]. Thermal creep
drives aerosol thermophoresis [12], repels air-suspended
particles from a hot surface [13], and operates in small-
scale gas flow devices such as thermally actuated micro-
cantilevers and Knudsen pumps [14–19].
This Letter points out the role of thermal creep for self-

propelling Leidenfrost droplets and, in particular, analyzes
the flow around a ratchet summit. The essential argument is
illustrated in the right-hand panel of Fig. 1. In the cleft
below the droplet, there is a strong temperature gradient of
several tens of Kelvin per micron. Because of the asym-
metric profile, the horizontal component of the creep
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FIG. 1 (color online). Leidenfrost droplet on a ratchet. The
left-hand panel shows the gas flow due to the evaporation at the
bottom of a droplet of radius R; the temperature of the solid TS is
significantly above the droplet’s boiling temperature TB. The
arrows in the right-hand panel indicate the thermal-creep flow
along the ratchet of period L and height D. The dashed line
indicates the boundary layer; its thickness ‘ corresponds to the
molecular mean-free path. In recent experiments the ratchet
height D varies from 200 nm to about 1 mm; for small D one
has h0 ¼ 10–100 �m.
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velocity has a finite mean value; the resulting gas flow
along the ratchet surface drags the droplet toward the right.
Note that this argument does not rely on the existence of
the outward gas flow illustrated in the left-hand panel
of Fig. 1.

Our detailed analysis relies on Stokes hydrodynamics. In
analogy to thermal transport in colloidal dispersions
[20,21], the droplet velocity is derived from the overall
force balance on a closed surface. In the absence of exter-
nal forces in horizontal direction one has

I
�xndS ¼ 0; (2)

where �xn is the stress pulling in the x direction on the
area element dS with normal n. The stress tensor �ij ¼
�0

ij � P�ij comprises a viscous part �0
ij ¼ �ð@ivj þ @jviÞ

and the excess pressure P. A nonuniform flow velocity v in
the cleft of width h creates a stress of the order �v=h,
which by far exceeds the viscous drag at the remaining part
of the droplet surface ��v=R. Thus the surface integral
may be limited to the part between droplet and support; it
closely follows the ratchet profile beyond the boundary
layer, as indicated by the dashed line in Fig. 1.

The velocity profile in the cleft comprises two contribu-
tions of different origin. The first one, due to evaporation at
the bottom of the droplet, is the outside gas flow in the left-
hand panel of Fig. 1; in the framework of Stokes hydro-
dynamics it does not contribute to the stress integral. Thus,
in the following we consider the second velocity term,
which arises from the thermal creep along the ratchet
profile, as indicated by the arrows in the right-hand panel.

The rectification mechanism is most obvious when com-
paring the viscous stress at the two slopes of the ratchet.
The normal on the vertical part points in the x direction; the
corresponding diagonal element �0

xx ¼ 2�dvx=dx van-
ishes since vx and its derivative are zero. On the opposite
side of slope m ¼ D=L, the stress �0

xn is finite. The
hydrostatic pressure varies little along the profile and will
be discarded, then Eq. (2) reduces to the condition

h�0
xzi ¼ 1

L

Z L

0
�0

xzdx ¼ 0 (3)

on the viscous drag on the slope of the ratchet tooth. If the
droplet is immobile, the shear stress reads as �0

xn �
��vC=h, where h is the width of the cleft. In order to
satisfy (3) the droplet moves at a velocity u, leading to
�0

xz ¼ �½u� vCðxÞ�=h. Inserting �0
xz in (3) one readily

obtains the expression for the drift velocity,

u ¼ hvC=hi
h1=hi : (4)

The temperature profile is determined by the boundary
conditions at the solid-gas interface, imposing continuous
temperature and heat flow through the interface. Because

of the important difference in thermal conductivity of the
brass support and the vapor layer, �V=�S � 10�4, the
temperature profile is strongly distorted, and the gradient
is much larger in the vapor phase.
For a first estimate we calculate rTk far from the cor-

ners, in the middle part of a ratchet tooth. In the limit
�V=�S ! 0 the brass surface is at constant temperature TS,
and the profile in the cleft is given by Tðx; zÞ ¼
TB � ðz=hÞ�T, where �T¼TS�TB and h¼h0þxD=L.
The resulting temperature gradient is perpendicular on the
solid-vapor and droplet-vapor interfaces. The velocity dis-
tribution of the molecules hitting the brass surface is given
by the temperature profile evaluated at one mean-free path
from the brass surface, z ¼ ‘� h. At this finite distance,
the gradient has a component parallel to the surfacerTk �
�T‘=h2. Replacing h with h0 and discarding numerical
factors gives a rough estimate for the drift velocity,

u� �‘=h20: (5)

With the mean-free path ‘ ¼ 130 nm and the kinematic
viscosity � ¼ 60 mm2=s of vapor at 300 �C, and h0 �
10 �m [22], one finds u� 10 cm=s, which is in qualitative
agreement with experiment [1–3].
For the sake of a more quantitative description we refine

the vapor temperature profile close to the upper corner of
the ratchet, which is illustrated in Fig. 2 and which turns
out to dominate the creep flow. In analogy to the electro-
static potential of a charged polygon, a simple conformal

transformation provides the expression Tðr; ’Þ ¼
TS � �Tðr=h0Þ�=� sinð�’=�Þ [23], where r; ’ are polar
coordinates with respect to the corner. The angle � is
related to the aspect ratio m ¼ D=L ¼ � cot�; for the
ratchets of Ref. [3] one finds the exponent �=� � 0:63.
The resulting parallel component of the gradient along the
dashed line close to point A reads [24]

rTk ¼ 	̂�T
‘h��=�

0

r2��=�
; (6)

α

FIG. 2 (color online). Temperature profile close to a solid-
vapor interface. Because of the small conductivity ratio
�V=�S, the isotherms (solid lines) are strongly distorted. At a
distance of one molecular mean-free path from the hot surface
(dashed line), the temperature gradient in the vapor has a
significant component parallel to the surface, rTk, which is

largest close to the upper corner.
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where 	̂ ¼ � �2

�2 cos
�
2 . Its essential feature is the weak

singularity at the ratchet summit, very similar to the elec-
tric field close to a charged cusp. The molecular mean-free
path ‘ provides a physical cutoff for the divergency.

Now the drift velocity is evaluated in terms of Eq. (4),
resulting in [24]

u ¼ 	
�T

TS

�

h0

�
‘

h0

�
�=� D=L

lnð1þD=h0Þ ; (7)

with the numerical prefactor 	 � 0:6 [24]. This expression
confirms the estimate (5) yet shows additional dependen-
cies on the ratchet parameters. Figure 3 reveals a striking
variation of u with D: the smaller the ratchet profile, the
larger the droplet velocity. This at-first-sight counterintui-
tive result is confirmed by the experiment of Ok et al. [3]:

Their data at intermediate temperatures are well fitted by a
logarithmic variation, similar to (7). Though this compari-
son does not account for the implicit dependence of h0 on
D, one may safely conclude on a qualitative agreement of
(7) with the data. Note that for a ratchet driven by nonlinear
hydrodynamics, one expects the opposite behavior, i.e., a
smaller velocity for small D. Indeed, from the left-hand
panel of Fig. 1 it is clear that forD � h0 the gas velocity in
the ratchet layer is small and the nonlinear term ðv � rÞv of
the Navier-Stokes equation is insignificant.
So far we have considered liquid droplets on a ratchet.

The same mechanism holds for a piece of dry ice (solid
CO2) above its sublimation temperature floating above a
hot metal surface; when graving a sawtooth profile at its
lower face, Lagubeau et al. observed motion similar to the
droplets discussed so far. Since the creep velocity occurs at
the bottom of the dry ice, the mean velocity of the vapor in
the cleft is zero, as illustrated in Fig. 4.
Lagubeau et al. measured the force F required to im-

mobilize a droplet floating on a ratchet [2]. In the range
R ¼ 1–7 mm, they found values from 3 to 30 �N, and a
power law F / R
, with an exponent 
 � 1:5. In the
present work, this force is given by the integral of the shear
stress over the contact area, F ¼ �R2�hvC=hi. With the
above expression for the thermal-creep velocity one finds

F ¼ �	
�R2D

L2
�
�T

T

‘�=�

h1þ�=�
0

: (8)

With the relation h0 /
ffiffiffiffi
R

p
[2], the force varies with the

droplet size as 
 ¼ 3
2 � �

2� � 1:2; within the experimental

uncertainties, this compares favorably with the measured
value.
The thermal-creep mechanism described here is not

limited to the motion of Leidenfrost droplets. As a straight-
forward application we discuss the gas pump shown in
Fig. 5, which consists of two nanostructured plates at
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FIG. 3 (color online). Drift velocity u as a function of the
ratchet parameter D for h0 ¼ 10; 30; 100 �m. The curves are
calculated from Eq. (7) with � ¼ 60 mm2=s, ‘ ¼ 130 nm,
�=� ¼ 0:63, L=D ¼ 4, and �T=T ¼ 1=2.
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FIG. 4 (color online). Thermal creep below a piece of dry ice
(solid CO2) floating above a hot metal surface due to sublimation
[2]. Because of the ratchet profile printed at its lower side, there
is a parallel temperature gradient rTk as indicated by dashed

arrows; the rectified thermal-creep flow propels the disk to the
left. The mean velocity of the vapor in the cleft is zero.
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FIG. 5 (color online). Gas pump driven by thermal creep. The
thermal gradient across the channel is given by their temperature
difference �T and spacing h0. At the ratchet corners, there is a
parallel componentrTk, as indicated by dashed arrows. Thermal

creep gives rise to a uniform gas flow at velocity u0, as given in
Eq. (4). Note the opposite orientation of the saw teeth on the cold
and hot side.
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temperatures differing by �T. Both solid interfaces show
thermal creep and thus impose a uniform gas flow across
the cleft. For a sufficiently small ratchet profile, D< h0,
Eq. (7) simplifies to

u0 ¼ 	
�

L

�T

T

�
‘

h0

�
�=�

: (9)

This velocity may attain several meters per second. It turns
out to be instructive to compare this ratchet with a Knudsen
pump [25]; in the present case, the thermal gradient is
perpendicular to the gas flow, whereas both are parallel
in the latter. Moreover, a Knudsen pump requires the
system size to be comparable to or smaller than the
mean-free path, and thus is restricted to very dilute gases.
Although the ratchet mechanism does depend on the ratio
‘=h0, it works for films that are a hundred times thicker
than the mean-free path.
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Capillarity and Wetting Phenomena (Springer, New
York, 2003).

[7] M.K. Chaudhury and G.M. Whitesides, Science 256,
1539 (1992).

[8] K. Ichimura, S.-K. Oh, and M. Nakagawa, Science 288,
1624 (2000).
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1632 (2003).
[23] T.A. Driscoll and L.N. Trefethen, Schwarz-Christoffel

Mapping (Cambridge University Press, Cambridge,
England, 2002).

[24] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.107.164502 for tem-
perature field and creep velocity close to the ratchet
corner.

[25] M. Knudsen, Ann. Phys. (Leipzig) 336, 205 (1909); 338,
1435 (1910).

PRL 107, 164502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

164502-4

http://dx.doi.org/10.1103/PhysRevLett.96.154502
http://dx.doi.org/10.1038/nphys1925
http://dx.doi.org/10.1007/s10404-010-0733-x
http://dx.doi.org/10.1021/la00086a025
http://dx.doi.org/10.1038/346824a0
http://dx.doi.org/10.1126/science.256.5063.1539
http://dx.doi.org/10.1126/science.256.5063.1539
http://dx.doi.org/10.1126/science.288.5471.1624
http://dx.doi.org/10.1126/science.288.5471.1624
http://dx.doi.org/10.1038/nmat1656
http://dx.doi.org/10.1098/rstl.1879.0078
http://dx.doi.org/10.1098/rstl.1879.0078
http://dx.doi.org/10.1098/rstl.1879.0067
http://dx.doi.org/10.1098/rstl.1879.0067
http://dx.doi.org/10.1016/0095-8522(65)90035-8
http://dx.doi.org/10.1016/0095-8522(65)90035-8
http://dx.doi.org/10.1017/S0022112080001905
http://dx.doi.org/10.1017/S0022112080001905
http://dx.doi.org/10.1116/1.581765
http://dx.doi.org/10.1116/1.581765
http://dx.doi.org/10.1103/PhysRevLett.90.124503
http://dx.doi.org/10.1007/s10404-004-0002-y
http://dx.doi.org/10.1063/1.2128040
http://dx.doi.org/10.1063/1.2128040
http://dx.doi.org/10.1109/JMEMS.2005.850718
http://dx.doi.org/10.1109/JMEMS.2005.850718
http://dx.doi.org/10.1063/1.3025304
http://dx.doi.org/10.1063/1.3025304
http://dx.doi.org/10.1039/b805888c
http://dx.doi.org/10.1088/0034-4885/73/12/126601
http://dx.doi.org/10.1063/1.1572161
http://dx.doi.org/10.1063/1.1572161
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.164502
http://link.aps.org/supplemental/10.1103/PhysRevLett.107.164502
http://dx.doi.org/10.1002/andp.19093360110
http://dx.doi.org/10.1002/andp.19103381618
http://dx.doi.org/10.1002/andp.19103381618

