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We study the slippage of a gas along mobile rigid walls in the sphere-plane confined geometry and find

that it varies considerably with pressure. The classical no-slip boundary condition valid at ambient

pressure changes continuously to an almost perfect slip condition in a primary vacuum. Our study

emphasizes the key role played by the mean free path of the gas molecules on the interaction between a

confined fluid and solid surfaces and further demonstrates that the macroscopic hydrodynamics approach

can be used with confidence even in a primary vacuum environment where it is intuitively expected to fail.
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It is traditionally assumed [1] that in a fluid flowing
along a solid surface, molecules nearest to the surface are
globally stopped due to friction and collisions. This so-
called no-slip boundary condition has been very successful
in modeling macroscopic experiments and it indeed forms
one of the fundamental axioms of classical hydrodynam-
ics. However, it has recently been recognized that this
standard condition is often not valid at submicro- and
nanoscales [2,3]. Furthermore, the hydrodynamic behavior
close to a solid surface changes drastically with interfacial
phenomena like roughness or surface chemistry and the
exact physics underlying these variations is not well under-
stood [2–5]. Beyond its fundamental interest, elucidating
these boundary conditions becomes a key issue for micro-
and nanoelectromechanical systems (MEMS-NEMS) such
as sensors and actuators working in fluidic environments
(liquid or gas). Although important results have been
reported in a liquid environment (e.g., flow through
nano- and microchannels or nanotribology [2,3,6,7]) there
are only a few indications to the significance of these
phenomena in gases [8–12].

In this Letter, we study a simple model apparatus able to
continuously tune in the sphere-plane confined geometry
the slippage boundary conditions at the solid-gas interface.
By decreasing the surrounding pressure of a sphere facing
a rigid wall in a gas (air or Helium), we find that these
boundary conditions continuously evolve from a viscous
regime supporting no slip to a ballistic regime with perfect
slip. We interpret our results in terms of a giant modifica-
tion of the gas slippage at the interfaces. Therefore, our
experiments appear to reconcile, in a single setup, bound-
ary conditions that look conflicting at first sight.

The experimental setup (Fig. 1) is a homemade atomic
force microscope (AFM) working at 300 K under con-
trolled atmosphere. An optical-fiber based interferometric
detection of the cantilever [10,13] provides the required
sensitivity to measure the impact of gas confinement on the
viscous damping of the probe. The latter is a 460 �m long,
50 �m wide, and 2 �m thick, silicon AFM microlever

with a R ¼ 20 �m radius polystyrene sphere glued at its
extremity. In order to control the electrostatic interaction
(see below), the whole probe (i.e., cantilever and sphere) is
coated with a 200 nm thick gold layer, and the AFM chip is
glued with silver paint on a holder attached to the micro-
scope frame. The probe spring constant k ¼ 0:45 N=m and
the resonance frequency f0 ¼ 9420 Hz have been mea-
sured using the Brownian motion of the thermally actuated
lever at 300 K [10,12]. The planar surface facing the sphere
is a silicon substrate coated with a 200 nm thick gold layer
and mounted on a high-precision positioning system to
adjust the cavity gap z between the sphere and the sample.
An inertial motor makes submicron steps over a large
7 mm displacement range, whereas a piezoscanner cor-
rected for hysteresis distortions ensures a fine vertical
positioning over a 1:5 �m range.
For our measurements, it is important to conceive a

method for measuring the absolute gap z. This is achieved
by applying a voltage bias V to the probe with respect to
the facing flat surface as commonly done in Casimir force
measurements where contact between facing surfaces must
be avoided [13,14]. The cantilever is mechanically actu-
ated with a dither at its resonant frequency using a phase-
locked loop device and the resonant frequency shift �f ¼
�ðV � VcÞ2 is recorded as a function of V to extract the
coefficient � that bears the desired distance information
(Vc is the difference in materials work functions). For

FIG. 1 (color online). (a) Scheme of the experimental setup.
(b) Zoom in on the interaction zone between the facing surfaces
defining the relevant physical parameters.

PRL 107, 164501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

0031-9007=11=107(16)=164501(5) 164501-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.164501


z � R in the sphere-plane geometry, we use the relation
� � f0��0R=ð2kz2Þ to find the absolute distance z. In fact,
to reach a better precision of 2% on z, we record � during a
precise 1:5 �m scan around the mean position and fit the
results against the above formula.

We have measured the vibration amplitude A as a func-
tion of the excitation frequency f for three gas pressures P
and several distances z. Examples of resonance curves are
shown in Fig. 2(a) at large distance and for different
pressures and in Fig. 2(b) for different distances in a
primary vacuum. By fitting each curve with the Lorentzian
response of a harmonic oscillator

A½f� ¼ A0

�f0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf20 � f2Þ2 þ �2f2

q (1)

we obtain the dissipation constant � ¼ k�=ð2�f20Þ of

the probe, with a fitting error smaller than 1%. The results
are shown on the left graphs of Fig. 3 for three pressure
conditions: (a) air at atmospheric pressure (1000 mbar),
(b) helium at low pressure (10 mbar), and (c) air vacuum
(4� 10�2 mbar).

When the sphere is far from the sample, the damping
factor reaches a constant value �0, characterizing the dis-
sipation of the fcantileverþ sphereg oscillating system in
the fluid. This value is directly extracted from the data and
reported in Table I (except in vacuum where the damping
factor is not saturated at the largest distance and �0 was
obtained by fitting with Eq. (3) as described below). As is

also visible in Fig. 2(a), �0 decreases with decreasing
pressure P in agreement with previous works [9,15,16].
In the viscous regime this is mainly due to the existence of

a boundary layer of thickness �B / 1=
ffiffiffiffi
P

p
[1,17] represent-

ing a dissipation channel at finite frequency that adds to the
intrinsic losses �int of the lever (i.e., losses in the limit

f0 ! 0): �0 ¼ �int þOð ffiffiffiffi
P

p Þ [9,15,16].
When the gap decreases, the hydrodynamic force due to

the gas confinement contributes a z-dependent additional
dissipation channel �HðzÞ such that �ðzÞ ¼ �0 þ �HðzÞ.
The central result of our work is shown in Fig. 3(d) where
�HðzÞ is plotted for different pressures. It is clearly seen that
the dissipation observed at small distance is strongly re-
duced at low pressure. If in agreement with usual statistical
mechanics [1] we accept that the fluid viscosity � does not
depend on pressure (a reasonable assumption in the viscous
regime), we can conclude that the boundary conditions at
the solid-fluid interface should strongly change with pres-
sure. In otherwords, the so-called slip lengthb, usually used

FIG. 2 (color online). (a) Resonance spectra of the cantilever-
sphere probe at three different pressures: ambient (1 bar), helium
gas (10 mbar), and vacuum (4� 10�2 mbar), when the fluid is
not confined (the sphere to surface distance is z � 200 �m).
Note that the mechanical excitation has been reduced at low
pressure to keep a similar amplitude at resonance. (b) Resonance
spectra of the probe in vacuum for three different gaps z. The
resonance width, i.e., damping factor, increases with decreasing
separation.

FIG. 3 (color online). (a)–(c) Evolution of the damping factor
�ðzÞ ¼ �0 þ �HðzÞ as a function of the gap z between the sphere
and the plane at three pressures: (a) ambient air at 1 bar,
(b) helium gas at 10 mbar, and (c) air vacuum at 4� 10�2 mbar.
The symbols represent the data (at 1 bar and 10 mbar, the
experimental error bars are within the symbol size) and the
continuous lines are the fitting curves according to the theo-
retical model. (d) Evolution of �HðzÞ with the gap z using the
same color code as (a)–(c). The two curves (thin lines) surround-
ing each fitting curve (thick lines) provide an error estimate on
the slip length b (from top to bottom: b ¼ 0, 0.05, 0.1, 55, 70, 85,
1000, 1200, 1400 �m).

TABLE I. Measured slip length b and asymptotic damping rate
�0 together with the calculated mean free path �m and accom-
modation coefficient pd [see Eq. (4)] at each pressure P.

Gas P [mbar] �0 [kg/s] b [�m] �m [�m] pd

Air 1000 7:0� 10�8 0.05 0.06 0.9

He 10 1:12� 10�8 70 10 0.17

Air 0.04 4:1� 10�9 1200 2500 1.2
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to characterize the fluid flow at the interface [3,4,6], varies
by a large amount. b is related to the fluid velocity gradient
at the solid surface by vjsurface¼b@v=@zjsurface (where v is
the tangential fluid velocity) and can equivalently be inter-
preted as the fictitious depth below the surface where the
no-slip boundary conditions would be satisfied.

In the sphere-plane geometry with no-slip boundary
conditions (i.e., b� 0), the dissipation constant �HðzÞ is
given in the limit z � R by the Taylor formula [1,6]:

�HðzÞ ¼ 6��R2

z
; (2)

where � is the dynamic viscosity which does not change
with pressure (1:8� 10�5 kg �m�1 � s�1 for air and
1:9� 10�5 kg �m�1 � s�1 for Helium). To take into ac-
count the gas slippage at the boundaries, we follow the
reasoning of Hocking [18] and Vinogradova [19] and in-
troduce a correction function f� such that

�HðzÞ ¼ 6��R2

z
f�
�
z

6b

�
(3)

with f�ðxÞ ¼ 2x½ð1þ xÞ lnð1þ 1
xÞ � 1�. In this formula

(obtained for an incompressible fluid in the laminar regime
[20]) we assume the same values for b on both surfaces
since the two walls are coated with the same material. By
fitting the three sets of data in Fig. 3(d) with Eq. (3) in the
range z < 20 �m, we determine a slip length b for each
pressure. Note that b is the only free parameter in the fit,
except for the data in vacuum where both �0 and b are
simultaneous adjustable parameters. b is however not
sensitive to the choice of �0 since b is determined essen-
tially by the absolute changes of �ðzÞ. The results are
presented in Table I with an estimation of the error shown
in Fig. 3(d). The strong increase of b at lower pressure
clearly shows that the friction of the confined fluid along
the solid boundaries considerably changes with pressure
going from the usual no-slip condition in ambient air (i.e.,
�H follows a 1=z law) to a quasiperfect slip regime at low
gas pressure [i.e., �H / � lnðz=bÞ=b].

In order to visualize the impact of a finite b on the fluid
dynamics close to the surface, we compute the (radial)
fluid velocity profile vðZÞ in the gap z between the two
surfaces using the analytical theory of [18,19]. Because of
the fluid incompressibility and the limit z � R, the fluid is
essentially ejected from the gap in the radial direction in
response to the vertical displacement of the sphere [21].
The comparison between the three different values of b
obtained in the experiment (see Table I) is shown in Fig. 4.
We clearly switch from the usual Poiseuille parabolic
velocity profile (i.e., v� 0 on the solid boundary) for
b ! 0, to a quasiconstant velocity profile in the gap for
b ! þ1. Therefore our experiment reveals a continuous
transition between these extreme regimes.

Now, from a microscopic point of view, the slippage
coefficient is linked to the very nature of the interaction

between moving surfaces and air molecules. Following the
historical approach of Maxwell’s kinetic theory of gases
[22], two interaction channels can be distinguished: a
specular one where molecules collide elastically with the
surface and a diffusive one where molecules are reflected
diffusively by the wall. The slip length b in this statistical
model is given by the Maxwell formula [12,22–24]:

b ’ 2

3
�m

2� pd

pd

(4)

where �m is the typical mean free path of gas molecules
and pd the tangential momentum accommodation coeffi-
cient, i.e., the fraction of those particles hitting the surface
with a diffusive reflection.
The main dependence of bwith pressure comes from the

molecular mean free path (see Table I): �m ¼ kBTffiffi
2

p
	P

where

T is the temperature, kB the Boltzmann’s constant, and 	
the molecular cross section. Two important asymptotic
regimes are clearly found in the experiment (see Fig. 4).
On the one hand, when the mean free path is extremely
small compared to other macroscopic dimensions (i.e., at
ambient air pressure), the fluid particles interact strongly
with themselves, and even more strongly with surfaces
located within a characteristic distance given by �m. This
is a consequence of multiple collisions, reflections, and
adsorption processes [2–4,22]. In this diffusive regime, the
tangential velocity of the molecules decreases at short
distance from the surface, such that the slip length b tends
to zero and the no-slip condition applies. On the other
hand, when the mean free path is considerably larger
than the gap, the molecules interact mainly with the surface
and there is no momentum transfer among the molecules
themselves. In this ballistic or molecular flow regime, the
velocity gradient vanishes at the surface. This results in a
giant slip length b.
In Eq. (4), the accommodation coefficient pd (see

Table I) depends on the surface properties and gas density

FIG. 4 (color online). The normalized radial fluid velocity
profile vðZ; rÞ=v0 (v0 is the sphere velocity) as a function of
the coordinate Z in a z ¼ 1 �m gap and for a radial coordinate
r ¼ 1 �m. The profiles are calculated for the three b values of
Table I.
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(i.e., on the probability of multiple collisions). Recent
analyses based on the fluctuation-dissipation theorem and
the Green-Kubo relation emphasize the importance of
several microscopic parameters such as surface roughness
and surface defects on the molecular dynamics close to
the surface [3–6]. In our experiment, the rms roughness of
the gold surfaces was found by AFM to be �r ’ 3 nm
for both the sphere and sample. This certainly contributes
to increase pd and reduce b as compared to a perfect
surface.

Note that Eq. (3) is an analytical solution of the Navier-
Stokes equations whose validity is well established when
the fluid density is sufficiently large to provide a local
equilibrium within the fluid. However, in the present ex-
periment in vacuum, the mean free path �m is much larger
than any other relevant length (e.g., the gap z) so that the
system enters in a molecular flow regime which should be
discussed within the more general frame of Boltzmann’s
kinetic equations [1,2]. Therefore, the slip length b de-
duced from our data at low pressure should be considered
as an extrapolation showing the limitation of the usual
hydrodynamic approach. Because the low-pressure data
of Fig. 3 are well reproduced in our analysis, our work
stresses the remarkable robustness of the Navier-Stokes
equation (3) even in this molecular regime.

Finally, it is worth commenting on the differences
between the present sphere-plane experiment and recent
results obtained in a plane-plane geometry [10]. At atmos-
pheric pressure, we obtain here a small slip length in
agreement with Refs. [8,14] whereas Ref. [10] reports on
a perfect slip in the same fluid (air). One of the differences
is the geometry, which is indeed known to be a critical
parameter at micro- and nanoscales [2,3,12,15,25].
Another difference in Ref. [10] is the probe velocity
which resulted from the thermal motion of the cantilever
with oscillation amplitude A � 0:05 nm, whereas the
probe is mechanically actuated here, i.e., A � 30 nm (in
the same context compare Refs. [8,11]). In addition, the
surface roughness was only a few angstroms, resulting in a
smaller accommodation coefficient pd and a larger slip
length b.

In conclusion, we have discovered that the slippage
of a gas along mobile rigid walls varies considerably
with pressure in the sphere-plane confined geometry. The
classical no-slip boundary condition, valid at ambient
pressure, changes continuously to an almost perfect slip
condition in vacuum. This study emphasizes the key role
played by the mean free path �m on the interaction between
a fluid and solid surfaces and demonstrates that the macro-
scopic hydrodynamics approach can be used with confi-
dence even in good vacuum conditions. We anticipate that
our work will have an impact on MEMS and NEMS
engineering and will motivate further fundamental studies
of the physics of gas slippage along solid and mobile
surfaces.
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