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Flaps can be detached from a thin film glued on a solid substrate by tearing and peeling. For flat

substrates, it has been shown that these flaps spontaneously narrow and collapse in pointy triangular

shapes. Here we show that various shapes, triangular, elliptic, acuminate, or spatulate, can be observed for

the tears by adjusting the curvature of the substrate. From combined experiments and theoretical models,

we show that the flap morphology is governed by simple geometric rules.
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Cracks and fractures are commonly observed around us
in various contexts [1] ranging from drying mud [2] to
broken windows or ice floes [3,4]. The classical fracture
theories, initially formulated by Griffith and Irwin [5,6],
can reliably predict the onset of crack motion. In contrast,
no general theory is able to predict the path of a crack as it
propagates. In some specific cases, however, interesting
insight has been gained about crack trajectories. For
example, thin films offer a particularly efficient setup to
study fracture propagation by limiting the crack motion to
a two-dimensional manifold. In this context, the crucial
role of geometry was identified in some oscillatory fracture
patterns obtained when a brittle elastic thin sheet is cut by a
moving object [7,8]. The propagation of two interacting
cracks in torn thin films is another example where fracture
path can be understood [9–11].

For adhesive thin films, the adhesion strength influences
the crack paths. It was shown recently how thin film
elasticity, adhesion, and fracture act together to generate
quasiperfect triangular tears for pulled adhesive tape on flat
substrates [12]. Regardless of the material properties, i.e.,
adhesive or fracture energy, film thickness, or bending
modulus, the triangular morphology is extremely robust;
only the tearing angle �f is modified. This property was

recently used to study the elasticity of graphene from
tearing experiments [13].

In this Letter, we show through a combined experimen-
tal and theoretical study how geometry of the substrate on
which the thin film is glued gives exquisite control of the
shape of the tears. With cylindrical substrates, it is possible
to generate convergent and even divergent crack paths as
presented in Fig. 1.

In the experiments, a thin elastic sheet is adhered to
various flat or curved solid substrates. Two parallel notches
are cut on one edge of the adhesive film to obtain a
rectangular flap. The flap is then pulled at a constant speed
(v¼1mm=s) and at a constant peeling angle (54�<
�<180�) with a probe tack device [see Figs. 2(a) and 2(b)].
The final detached flaps were then digitized and further
analyzed (ImageJ and Plot Digitizer) to obtain the shape of
the various tears (selected tears are shown in Fig. 1).

Flat substrates.—The shapes of tears are fully deter-
mined by the evolution of the flap widthW with the peeled
distance ‘ during the advancing of both cracks (Fig. 1). In
order to explain this evolution, we use a model based on
Griffith’s theory of fracture to describe the path of these
tears [12]. It should be noticed that, due to the peeling
geometry, the pulling force induces a deformation of the
adhesive film localized in a ridge with a curvature � ¼ 1=r
that connects the flap to the substrate; see Fig. 2(c). The
energy embedded into the system by pulling the flap is thus
shared among the elastic energy stored in the ridge, the
penalties associated with the creation of new surfaces,
when cracks advance (�, the work of fracture of the
film), and the energy dissipated in the de-adhesion process
(�, the adhesive energy per unit area). The variation of
energy for an infinitesimal motion of the peeling front is,
thus, given by

dU ¼ dUE þ 2�tdsþ �dA;

FIG. 1 (color online). Typical morphologies of flaps detached
from adhesive tapes pulled from flat and curved substrates with a
peeling angle of 90�. (a) Flat substrate, triangular shape. When
the peeling front propagates by a infinitesimal d‘ along the x
axis, it produces two cracks of length ds together with a variation
of the width dW and a variation of the peeling area dA.
(b) Substrate with negative curvature, acuminate. (c),
(d) Substrate with positive curvature with W0 >Wc, spatulate
(c) andW0 <Wc, elliptic (d), whereW0 is the initial width of the
flap. Negative (positive) curvature, Wc, �f, and � are defined in

the text. Scale bars are 5 mm. The peeling front propagates
upward.
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where UE, t, ds, and dA are the elastic energy of the
flap, the film thickness, the increment in crack length, ds ¼
d‘= cos�f, and the variation of the peeling area dA ’ Wd‘,

respectively [see Fig. 1(a)].
Assuming that UE depends only on W and ‘, the varia-

tion of energy needed to move the front by a distance d‘
becomes [@x stands for (@=@x)]

dU ¼
�
�2@WUE tan�f þ @‘UE þ 2�t

cos�f
þ �W

�
d‘; (1)

where dW ¼ �2 tan�fd‘ since by convention a positive

tearing angle leads to a decrease of the flap width. To solve
this equation and find the function �fð‘Þ that determines

the shape of the flap, we need to compute the elastic energy
stored in the ridge of curvature �. The average curvature
of this ridge is simply given by �� �=L, where L is
the length of the ridge [Fig. 2(c)]. The elastic energy is,
therefore, given by

UE � BW�2=2L (2)

(where B is the bending modulus of the film). The length of
the ridge L can be obtained through energy minimization
dU=d‘ ¼ 0, reflecting a balance between the different

energy terms of Eq. (1). Considering the expression of
UE given above, we obtain the relation

� B�2

L
tan�f � BW�2

2L2
þ 2�t

cos�f
þ �W ¼ 0: (3)

Assuming that the width of the flap is much larger than the
length of the ridge [so that the first term of Eq. (3) is
negligible compared to the second one] and using the
approximation cos�f ’ 1 (valid for the studied range of

angles), we obtain the expression for L:

L ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW

2ð2�tþ �WÞ

s
:

Inserting this expression in Eq. (2) yields the final expres-
sion for the elastic energy.
The propagation of the cracks follows the angle �f

which minimizes the variation of energy (i.e., this can be
considered as the maximum-energy-release-rate criterion
[14]). The tearing angle is determined by considering that
ð@�fdUÞ ¼ 0. From Eq. (1), this condition becomes

sin�f ¼ @WUE

�t
: (4)

The obtained final expression for the elastic energy
combined with Eq. (4) determines the tearing angle as a
function of the material properties:

sin�f ¼ �

�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð2�tþ �WÞ

2W

s
: (5)

Depending on the relative importance of adhesion and
crack energy terms (determined by the ratio �W=�t), we
can distinguish two different regimes. For large flaps,
adhesion dominates the evolution of the crack path
(W � �t=� ’ 1 mm in our experiments). This regime,
characterized by a constant tearing angle �f, is described

by the relation

sin�f ¼ �

ffiffiffiffiffiffiffiffiffi
2B�

p
2�t

: (6)

This relation is similar to the one obtained in Ref. [12], the
influence of the peeling angle � being added. The linear
relation between sin�f and� is in close agreement with the

experimental data shown in Fig. 2(d).
In addition, a regime dominated by the fracture energy

should always be observed near the tip of the flaps, i.e.,
when W becomes very small. This regime is characterized

by sin�f ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=�tW

p
. The tearing angle thus increases

for decreasing flap width; this yields a shortening of the
flap and a reentrant morphology (see, for instance, Fig. 1 of
Ref. [12]). Considering that sin�f ’ tan�f ¼ dðW=2Þ=d‘,
the shape of the tears in this regime corresponds to the

power lawW � ‘2=3. However, it should be mentioned that

FIG. 2 (color online). Experimental setup showing the tearing
process for positive (a) and negative (b) curvature. The peeling
front advances at a constant velocity v with a constant peeling
angle �. �R is the radius of curvature of the peeling front.
(c) Cross section along the cylindrical axis of the system. r is
the radius of curvature of the ridge connecting the flap to the
substrate, L is the length of this ridge, and F is the applied force.
(d) Evolution of the tearing angle �f for a flat substrate as a

function of the peeling angle �. Each data point corresponds to
the average of at least 5 experiments.
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this regime is rather difficult to observe when conventional
adhesive tapes are used.

Curved substrates.—When a thin film is glued on a
curved substrate, the tearing process produces various
morphologies for the flaps as depicted in Fig. 1. Those
shapes depend on the radius of curvature, R, of the sub-
strate. For clarity, we define the curvature as shown in
Figs. 2(a) and 2(b) and use, in the following, the parameter
� equals þ1 or �1 for positive or negative curvature,
respectively. The main ingredient determining the global
shape of the tears is the morphology of the peeling front
induced by the substrate curvature. This front is linear for
flat substrates, but, in contrast, it is characterized by a finite
radius of curvature, �R, for cylindrical substrates as shown
in Fig. 3(c). The direction of the curvature with respect to
direction of the crack propagation is determined by the sign
of the substrate curvature. This is the main source for the
breaking of symmetry which explains the occurrence of
closing or opening a crack path when the peeling of the
adhesive film is performed on the exterior (� ¼ �1) or the
interior (� ¼ þ1) side of the cylinder, respectively.

The relation between the radius of curvature of the
peeling front and the radius of curvature of the substrate
can be explained with the help of simple geometrical argu-
ments. The limiting zone of contact between the adhesive
film peeled with an angle� and the substrate is given by the

intersection between the cylindrical substrate and a plane
forming an angle �=2 with the symmetry axis of the
cylinder as shown in Fig. 3(b). The projection of this curve
on the ðx; yÞ plane is characterized by a radius of curvature
at its tip, �R, given by �R ¼ R tan�=2; see Fig. 3(c). This
relation corresponds to the geodesic curvature of the inter-
section curve [15] and is in very good agreement with the
evolution of �R with the peeling angle [Fig. 3(d)] for various
values of R. The curvature of the peeling front is not
significantly influenced by the speed at which the front
advances, i.e., by the adhesion energy, indicating that the
origin of this curved morphology is purely geometric. It is
worth noting that the peeling front becomes linear for
peeling angle � close to 180� irrespective of the curvature
of the substrate ( �R tends to infinity for � close to �).
In order to derive a model describing the shape of the

flaps for curved substrates, we make the following assump-
tions. (i) The tears are produced in the adhesion regime.
This approximation is justified, since almost everywhere
the width of the flaps is large enough to neglect fracture
energy (W � 1 mm) except for the extreme tip of the con-
vergent tears. (ii) The distortion of the peeling front
induces a rotation of the path direction of the cracks by
an angle � [see Fig. 3(c)], keeping the same value of the
tearing angle �f, given by Eq. (6). To account for this

rotation of the crack path with respect to the cylinder
axis, we introduce a new angle � ¼ �f � �� (with � ¼
�1; see above). The angle � is determined by the distor-
tion of the peeling front and the width of the flap and is
given by W=2 �R. This new geometry transforms the equa-
tion that determines the shape of the tears for curved
substrates into

dW

d‘
’ 2 sin� ’ 2 sin�f � �

W
�R
;

withW= �R as the lowest order and using as above cos�f ’1.

Introducing the normalization ~W ¼ W=2 �R sin�f and
~‘ ¼ ‘= �R, we get the following ordinary differential
equation:

d ~W

d~‘
¼ 1� � ~W: (7)

The solution of this ordinary differential equation is
given by

~W ¼ �½1þ ð� ~W0 � 1Þe�ð~‘0�~‘Þ�; (8)

where ~W0 ¼ ~Wð~‘0Þ is an arbitrary point along the flap
profile.
Let us now discuss in detail the morphology of these

solutions for the different values of � and ~W0. For
substrates with negative curvature, we always observe
closing tears with an ‘‘acuminate leaflike’’ shape [16]
and a sharp decrease of� with ‘ [Fig. 1(b)]. With � ¼ �1
and ~Wð0Þ ¼ 0 (i.e., this point represents the ultimate tip of

FIG. 3 (color online). (a) Origami model of the morphology of
a thin film adhering onto a cylinder with a peeling angle �.
(b) Lateral view showing the plane containing the limiting zone
of contact between the adhesive film and the cylindrical substrate
and forming an angle �=2 with the x axis. (c) Top view showing
the curved morphology of the peeling front. The angle � defines
the rotation at the cracks of the tangent of the curved front (blue
solid line) with respect to a planar peeling front (red solid line).
Scale bar: 3 cm. (d) Evolution of the observed radius of curva-
ture �R=R with the peeling angle �.
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the tear), Eq. (8) simplifies to ~W ¼ ðe~‘ � 1Þ, which cap-
tures almost perfectly the evolution of the tear shape for
various samples [see the master curve in Fig. 4(a)]. For the
positive curvature, pulling an adhesive can produce either
opening (‘‘spatulate’’) or closing (‘‘elliptic’’) tears as
shown in Figs. 1(c) and 1(d), depending on the initial value
of the flap width. Interestingly, these morphologies and
the transition in shape with the width are also captured by
the model. For � ¼ þ1, the solution reads

~W ¼ ½1þ ð ~W0 � 1Þe~‘0�~‘�: (9)

From this equation, two different regimes are indeed ex-
pected depending on the flap width. For a large initial
width ( ~W0 > 1 or W0 >Wc ¼ 2 �R sin�f), we observe a

rapid opening of the tears contrasting with the triangular
shapes previously reported. This behavior is predicted by
the model, since, in this case, the exponential term of
Eq. (9) is strictly positive. The agreement with the experi-
mental data is very good, a master curve of all the results

being given in Fig. 4(b). For a small width ( ~W0 < 1 or
W0 <Wc), we recover closing tears but with an ‘‘elliptic
leaflike’’ shape instead of an acuminate one. This behavior
is also predicted by our model, since, in this case, the
exponential term of Eq. (9) is strictly negative. Again,
the model based on geometry arguments captures the
variety of the tear morphology observed for curved sub-
strates. The transition between opening and closing crack
paths predicted by the model is also experimentally ob-
served and perfectly reproduced by the theory [Fig. 4(b)].
It should be emphasized that, for positively curved sub-
strates and a given set of experimental conditions (R, �, �,
�, and t), there is a single value of the widthWc ¼ 2 �R sin�f
that produces tears with a constant width and parallel
cracks. This value obviously corresponds to an unstable
state lying between both opening and closing domains.
As shown above, the peeling front is linear for a peeling

angle close to � regardless of the curvature of the
substrate. As expected from the proposed model, the
tears adopt a triangular morphology for various curved
substrates when the flap is pulled at 180�; see the inset in
Fig. 4(a).
In conclusion, we have demonstrated for flaps detached

from films glued to simple circular cylinders that a constant
mean curvature strongly affects the crack path and thus the
shape of the tears. Moreover, the proposed model can be
readily extended to any developable surface, i.e., conical or
cylindrical. Indeed, Eq. (7) describes the local behavior of
the crack propagation, and, therefore, a spatial variation of
the surface curvature can be easily introduced. A possible
extension of this work could be the study of the influence
of Gaussian curvature on crack path and tear morphology
for surfaces such as sphere and hyperboloid.
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