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We show that a weakly absorbing, strongly scattering (white) medium can be made very strongly

absorbing at any frequency within its strong-scattering bandwidth by optimizing the input electromagnetic

field. For uniform absorption, results from random matrix theory imply that the reflectivity of the medium

can be suppressed by a factor �ð‘a=‘ÞN�2, where N is the number of incident channels and ‘, ‘a are the

elastic and absorption mean free paths, respectively. It is thus possible to increase absorption from a few

percent to >99%. For a localized weak absorber buried in a nonabsorbing scattering medium, we find a

large but bounded enhancement.
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The absorption properties of a medium at a given fre-
quency depend not only on the atomic and molecular
constituents of the medium, but also on the coherence
properties of the incident radiation. This was emphasized
by recent work demonstrating the phenomenon of coherent
perfect absorption (CPA), in which a cavity containing a
weakly absorbing medium completely absorbs an appro-
priately chosen input field; this is achieved by choosing the
field to be the time reverse of the lasing mode which the
cavity would emit, if the loss medium were replaced by a
gain medium of equal strength [1,2]. Other input fields,
differing only in the phase relationships of the incident
waves, are only weakly absorbed, as are incoherent inputs.
Like a laser, CPA only occurs at discrete frequencies in
a given system. This raises a question: under what con-
ditions, if any, is it possible to control absorption over a
continuous and large frequency range by optimizing the
input fields at each frequency?

A related question, which has recently been extensively
studied, concerns the conditions under which light can
be transmitted through an opaque, lossless, multiple-
scattering medium. In the diffusive regime, the transmis-
sion probability decays as ‘=L, where ‘ is the elastic
transport mean free path and L is the sample length; hence,
a sample with L � l is highly reflecting at all frequencies.
Nonetheless, it has been known for some time that, at any
frequency, there do exist coherent superpositions of input
fields which penetrate much further than the mean free path
and hence may transmit with high probability through the
sample [3–6]. This effect has been demonstrated experi-
mentally in the past few years, as practical methods were
found for determining the optimal input fields without
detailed a priori knowledge of the scattering configuration
[7,8]. This suggests that, if a multiple-scattering medium
contains some material absorption, then, even if that
absorption is weak (i.e., the medium normally appears
‘‘white’’), it should be possible to substantially enhance
the effective absorption at any frequency within a wide and
continuous frequency range by tuning the input fields to

penetrate deeply enough that the photon path length ex-
ceeds the large but finite absorption length. In this Letter,
we provide a theoretical and numerical demonstration of
this effect, which we refer to as coherently enhanced
absorption (CEA). It is, in general, distinct from CPA,
which follows rigorously from time-reversal symmetry
and is not specific to multiple-scattering media (but
requires fine-tuning of the sample parameters and operat-
ing frequency).
Linear scattering from a medium is described by the

scattering matrix (S matrix), which relates incident and
scattered amplitudes in the basis of asymptotic free
solutions of the wave equation. The S matrix depends on
the scattering geometry and material properties, as well as
the frequency of the input fields, but does not depend
on the fields themselves. Given a vector jc ini whose
components are the intensity-normalized input ampli-
tudes in each of the N scattering channels, the output
amplitudes are jc outi ¼ Sjc ini, and the total output inten-
sity is hc outjc outi ¼ hc injSySjc ini. For a lossless system,
this quantity is always unity, since S is unitary; in the
presence of absorption, it is smaller than 1 [9].
We will focus on the case of scattering from one surface

of an optically dense and weakly absorbing medium, in
which all incident fields are either reflected or absorbed, so
that the S matrix coincides with the reflection matrix r.
Denote the eigenvalues of the Hermitian matrix ryr by
Rn, where 0 � R1 � � � � � RN < 1. The sample-specific
‘‘mean reflectivity’’ �R ¼ ð1=NÞPnRn is the normalized
output power when the inputs in each channel are inde-
pendent (e.g., having no coherent phase relationship); the
moments of this quantity were studied in earlier works on
reflection from random absorbing media [10,11]. In study-
ing CEA, the relevant physical quantity is the smallest
reflection eigenvalue, R1. By the variational principle,
hc injryrjc ini � R1 for any intensity-normalized jc ini.
Hence, 1� R1 is the maximum amount of absorption
that can be achieved, and its eigenvector gives the maxi-
mally absorbed set of input amplitudes. In an experiment,

PRL 107, 163901 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

0031-9007=11=107(16)=163901(5) 163901-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.163901


if noise sources rule out measuring reflectivities below a
value R0 >Rn, any input waveform in the eigenspace
spanned by eigenvectors of R1; R2 . . .Rn will give reflec-
tivity�R0. However, we note that enhanced absorption can
also be measured directly, e.g., via fluorescence or heat
generation.

We employ a model previously introduced and studied
by Beenakker et al. [10] and by Bruce and Chalker [11]. As
shown in Fig. 1(a), it consists of a waveguide with N
channels, containing a medium with elastic scattering
mean free path ‘ and ballistic absorption length ‘a. The
ratio of these lengths defines the absorption parameter
a � ‘=‘a, with a � 1 in the regime of interest. In addi-

tion, the quantity La � ffiffiffiffiffiffiffiffi
‘a‘

p
gives the average distance a

diffusing particle penetrates into the medium before being
absorbed. From the combination law for infinitesimal scat-
tering segments (each of which randomly scatters between
channels and also imposes some absorption parameterized
by a), the joint probability distribution (JPD) for the
reflection eigenvalues can be shown to evolve with the
sample length L according to the equation [10,11]

‘ðN þ 1Þ @px

@L
¼ 1

2

X
n

@2px

@x2n
þ 1

2

X
n

@

@xn

�
@V

@xn
px

�
; (1)

where pxðfxngÞ is the JPD given in terms of the variables
xn � 1

2 cosh
�1½ð1þ RnÞ=ð1� RnÞ	. This change of varia-

bles leaves the diffusion term in (1) independent of fxng,
allowing an analytic solution of the stationary distribution.
The ‘‘potential’’ V in Eq. (1) is given by

V ¼ X
n

½aðN þ 1Þ coshð2xnÞ � lnj sinhð2xnÞj	

� X
m>n

ln½coshð2xmÞ � coshð2xnÞ	: (2)

Equation (1) is similar to the Dorokhov-Mello-Pereyra-
Kumar (DMPK) diffusion equation [12,13], which is de-
rived from a quasi-one-dimensional (quasi-1D) waveguide
model without absorption. The DMPK equation describes
the JPD of transmission and reflection eigenvalues, and its
results have been found to generalize to geometries with no
transverse confinement, as when a surface is illuminated by
a spot [14] (the geometry used in subsequent experiments
on coherently enhanced transmission [7]). We expect the
results for the absorbing case to generalize in the same
way.
For La < L, pxðx1; . . . ; xNÞ � e�V is the stationary

(L-independent) limiting solution to (1). To make contact
with standard random matrix theory (RMT), a further
change of variables yn � 2aðN þ 1Þ½coshð2xnÞ � 1	 is
performed, which yields

pyðy1; . . . ; yNÞ � e
�ð1=2ÞP

n

yn Y
m>n

ðym � ynÞ: (3)

This is the Laguerre eigenvalue distribution, characteristic
of a well-studied ensemble in RMT [15]. The ensemble-
averaged mean reflectivity can be determined by integrat-
ing over this distribution [10,11]:

h �Ri 
 1þ 2a� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ aÞp

: (4)

Note that this result is independent of N.
We are interested in the distribution of the smallest

reflection eigenvalue, R1. This can be found from the fact
that Ny1 follows a �

2
2 distribution [15]. Thus,

pðR1Þ ¼ 2aNðN þ 1Þ e
�2aNðNþ1Þ½R1=ð1�R1Þ	

ð1� R1Þ2
; (5)

and the ensemble-averaged value is

hR1i ¼ 1þ 2aNðN þ 1Þe2aNðNþ1ÞEið� 2aNðN þ 1ÞÞ

 ½2aNðN þ 1Þ	�1 for a * N�3=2: (6)

Unlike h �Ri, this quantity does depend on N. The decrease
of R1 with increasing N is very natural because the eigen-
value repulsion characteristic of RMT ensembles tends to
push the smallest eigenvalue to small values.
Thus, even if the material absorptivity is weak enough

that h �Ri � 1, if N is sufficiently large, then R1 � 1=aN2

can be very small. In typical free-space optical experi-
ments, N 
 A=�2, where A is the spot size, so this condi-
tion should be easily achieved. According to (4) and (6),
the regime of weak average absorption and strong optimal
absorption is a � 1 � 2aN2. The physical interpretation
of these inequalities is that photons have little chance of
being absorbed between scattering events (‘a � ‘), but

FIG. 1 (color online). (a) Model of an absorptive multiple-
scattering system. A waveguide with dielectric constant n20 is

connected to a region of length L with dielectric n21 þ ��þ i�,
where ��ðxÞ is a real white-noise disorder term drawn from a
uniform distribution over [� d0, d0] and � is the material
absorption. (b) Variation of reflection eigenvalues fRng with
frequency k for a fixed disorder realization, with n0¼n1¼1:5,
N ¼ 80 scattering channels, mean free path ‘ ¼ 0:05L, and
uniform � with ballistic absorption length ‘a ¼ 13:3L. Dashed
lines show the ensemble averages of the mean and smallest
reflectivity, �R and R1. (c) Semilogarithmic plot of R1, which
fluctuates, but is �10�2 over a continuous frequency range.
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those in the maximally absorbed mode have a negligible
chance of diffusing the entire quasi-1D localization length
� ¼ N‘ before being absorbed. For example, for a � 0:01
and N ¼ 80, we have h �Ri � 0:8 and h �R1i< 0:01.

To test and generalize the above results, we have per-
formed numerical simulations of scalar wave propagation
in quasi-1D structures. Thewave equation ðr2þ�k2Þc ¼0
is discretized using a 2D tight-binding model on a square
grid. A semi-infinite uniform waveguide of index n0 is
connected to a scattering region with average index n1,
uniform absorption �, and random scatterers; see Fig. 1(a).
The reflection matrix is computed for this rectangular re-
gion, of varying length and width and perfectly reflecting
walls on three sides, using the recursive Green’s function
method [10,16]. The elastic mean free path ‘ is computed
using the relation h �Ti � ‘=L via separate transmission
simulations without absorption. In all simulations, we
use frequency k ¼ 750=L, lattice spacing L=750, and
waveguide width L=5. The ballistic absorption length is
‘�1
a ¼ c0�k=2n1, where c0 is a constant of order unity

determined by a fit to Eq. (4).
The variation of h �Ri and hR1i with ‘=‘a is shown in

Fig. 2(a), together with the analytic predictions. Two sets
of simulations are plotted. In the first, the lead and scatter-
ing medium are index-matched (n0 ¼ n1 ¼ 1:5), as in the
model of [10,11]. In the second, they are mismatched with
n0 ¼ 1, n1 ¼ 1:5, representing scattering from air into a
denser medium, a case for which analytic results were not
known. In both cases, despite weak average absorption
(‘a > 40‘ and h �Ri � 1), we obtain values of hR1i as small
as 10�2 to 10�3. For the index-matched results, the data
for hR1i agree very well with the theory, Eq. (6), using
the number of exterior channels, N ¼ 80. For the
index-mismatched case, the exterior waveguide has fewer
channels, N ¼ 49, at the same frequency, compared to the
average of 80 interior channels; nonetheless, we find that
Eq. (6) holds very well using the exterior channel number.
Thus, illuminating from a lower index medium (e.g., from
air) does diminish the CEA effect compared to the index-
matched case, but large enhancement is still possible and
is governed by the same factor of ð2aN2Þ�1. Figures 2(b)
and 2(c) show the numerical distributions of the reflection
eigenvalues for fixed a, which are in excellent agreement
with the theoretical distributions. The distribution of R2 in
Fig. 2(b) illustrates the role of eigenvalue repulsion in
confining R1 to small values.

The analytic predictions for hR1i and h �Ri have no de-
pendence on the frequency k, apart from the weak variation
of the number of exterior channels N with k, assuming that
the parameter a varies negligibly with frequency. Unlike
the CPA systems studied in Refs. [1,2], in which near-
perfect absorption is obtained at particular discrete values
of a and k, in the present systems, highly enhanced
absorption is possible at any frequency, so long as the
incident waveform is optimized in the vicinity of each

frequency of interest. Thus, while CEA is not a broadband
effect in the usual sense, it can be realized over a wide
range of frequencies. To determine the frequency interval
over which a fixed waveform, optimized at a single
frequency, will still lead to strongly enhanced absorption,
we calculate the frequency correlation of R1, shown in
Fig. 3. We find that the decorrelation frequency scale is
kc
0:5=‘a, which is to be expected; by analogy to the
case of transmission through a nonabsorbing medium,
where the decorrelation scale is determined by the length
of paths that traverse the sample and escape, here the
maximally absorbed mode arises from the interference of
many coherent paths of length �‘a. Thus, measurements
obtained at frequency intervals �k � 0:5=‘a are indepen-
dent. For ‘ ¼ 1 �m, ‘a ¼ 100‘, and � ¼ 1:5 �m, this
gives ��c 
 1:5 nm. While the CEA effect is more robust
than CPA when N � 1, it should be noted that, when
N ! 1, continuous CEA is no longer possible, whereas
CPA can still occur at discrete frequencies.
An interesting and important extension of the above

model is to a localized or extended absorber buried behind

FIG. 2 (color online). (a) Mean reflectivity �R (open symbols)
and smallest reflection eigenvalue R1 (filled symbols) vs the
absorption strength a. Each data point is an average over 2000
disorder realizations. The scattering medium has n1 ¼ 1:5, dis-
order strength d0 ¼ 0:6 (‘ ¼ 0:05L), and uniform absorption.
Two simulation sets are shown: (i) external index n0 ¼ 1:5 and
N ¼ 80 exterior waveguide channels (circles) and (ii) index
mismatch with n0 ¼ 1 and N ¼ 49 exterior channels (triangles).
In each case, we fit h �Ri to Eq. (4) to obtain the constant c0
in ‘�1

a ¼ c0�k=2n1, finding c0 ¼ 2:14 for (i) and c0 ¼ 4:65
for (ii). This determines the analytic form of hR1i, plotted as
solid curves, with no free parameters. The vertical dashed line
denotes a � ð‘=LÞ2, required for the stationary solution to apply.
(b) Distributions of R1 and R2 from simulations (histograms).
The solid line shows the analytical expression (5) for pðR1Þ;
dotted lines show the ensemble averages hR1i and hR2i.
(c) Semilogarithmic plot of reflection eigenvalue density, com-
paring simulations (histogram) to the approximate density

2aðN þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Nð1� RÞ=aðN þ 1ÞR	 � 1
p

=�ð1� RÞ2 (solid line),
from the large-N density of the Laguerre distribution [15]. The
simulations for (b),(c) were performed with n0 ¼ 1:5 (N ¼ 80)
and � ¼ 0:0003 (‘a ¼ 125‘).
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a layer of lossless scattering medium. Such a system has
been studied experimentally by Vellekoop et al., who
demonstrated strong focusing of light through a lossless
medium to enhance fluorescence in a small interior spot
[17]. To our knowledge, there has been no theoretical work
on the limiting efficiency of such a process. We consider
two variant models, shown in the inset of Fig. 4(a). A
lossless region of length Lp is added in front of the absorb-

ing region of length L, which contains either uniform
absorption or a localized absorber. For a within the ab-
sorber satisfying 2aN2 � 1, the simulations still show
CEA of approximately 2 orders of magnitude. However,
R1 now saturates with increasing a to a value
 ðLp=‘NÞ2.
This saturation value appears to be independent of the size
of the absorbing region, although the larger region reaches
this value for smaller a.

To understand this behavior qualitatively, we return to
Eqs. (1) and (2). One can think of the eigenvalues fxng as
interacting gas particles with a stationary distribution at
length L, in which the confining potential due to a in (2)
is balanced by diffusion and interparticle interactions [6].
This is the distribution for which hR1i 
 ð2aN2Þ�1

for the extremal particle. Adding the lossless region
corresponds to turning off the confining potential for
a ‘‘time’’ T ¼ Lp=‘ðN þ 1Þ, causing the particles to

drift and diffuse to larger values of xn. In fact, Fig. 4(b)
shows that hx1ðLpÞi � T, so that hR1i 
 hx21i � T2, which

is the saturation scale observed in Fig. 4(a). For Lp &

‘ðN þ 1Þ, these results show the feasibility of enhancing
the delivery of energy to a buried absorber by orders of
magnitude.

A final critical question is whether incident waveforms
approaching the CEA optimum can be found when details
of the scattering medium are unknown, via an empirical
optimization scheme analogous to those employed for
transmission through lossless media [7,8]. Initial numeri-
cal tests based on our model are promising, with simple

optimization schemes giving order-of-magnitude increases
in absorption, although not yet approaching theoretical
limits. This problem, and that of the buried absorber, are
rich and exciting directions for future work.
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