
Trimer Liquids and Crystals of Polar Molecules in Coupled Wires

M. Dalmonte,1,2 P. Zoller,2 and G. Pupillo2,3
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We investigate pairing and crystalline instabilities of bosonic and fermionic polar molecules confined to

a ladder geometry. Combining analytical and numerical techniques, we show that gases of composite

molecular dimers as well as trimers can be stabilized as a function of the density difference between the

wires. A shallow optical lattice can pin both liquids, realizing crystals of composite bosons and fermions.

We show that these exotic quantum phases are robust against conditions of confinement of the molecular

gas to harmonic finite-size potentials.
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Binding among three or more particles plays a funda-
mental role in various physical systems ranging from quark
confinement in QCD to tetramer biexciton formation in
carbon nanotubes [1]; in quantum magnets, it is respon-
sible for the formation of many-body quantum phases of
spin multipoles [2]. In atomic quantum gases, two-body
pairing is at the heart of paradigmatic phenomena, such as
the observation of the Bose-Einstein condensation-BCS
crossover [3] in mixtures of ultracold fermionic atoms
and the prediction of Fulde-Ferrell-Larkin-Ovchinnikov
[4] and Sarma [5] phases in spin-unbalanced gases. The
study of few-body pairing, however, is usually confined to
Efimov-like resonances [6], while the realization of finite-
density liquids made of composite particles is hindered by
losses due to three-body recombination. Polar molecules
confined to low-dimensional geometry provide a new op-
portunity to study intermolecular pairing mechanisms and
the associated quantum phases in a setup where collisional
losses and also chemical reactions are suppressed [7–9].
Pairing of two spin-polarized fermionic molecules
across coupled two-dimensional (2D) layers [10] or
one-dimensional (1D) wires [11] has already lead to the
prediction of, e.g., 2D interlayer superfluidity [12] for the
special case where the number of molecules is the same in
all layers (wires). However, the pairing dynamics in the
general situation where this number can vary across
the layers (wires), as it happens in experiments [8], has so
far remained largely unexplored. Different particle numbers
in the layers lower the overall (spin-rotational) symmetry
of the problem, which makes the underlying physics
drastically different [13]: A general pairing mechanism
may exist for the formation of stable multimolecule com-
posite structures. The goal is now to determine whether
(spin-rotational) symmetry breaking induces stablemultimer
liquids in confined quantum gases, where few-body pro-
cesses are usually associated with resonances and losses [6].

In this Letter, we study a situation where polar mole-
cules are confined to two coupled 1D wires, under

conditions where the number of molecules can be the
same or vary across the wires, similar to current experi-
ments. This presents several new scenarios: (i) When the
population is identical in the wires, a two-body bound state
is always present and is responsible for the appearance of
dimer liquids, similar to 2D [12]; see Fig. 1(c). However,
we find that (ii) few-body pairing is favored for any ratio of
populations between the wires P ¼ p=q, with p; q 2 N,
which is a dense set between �0; 1�. This leads to the
stabilization of novel quantum phases of interacting
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FIG. 1 (color online). (a) Molecules with dipole strength d�
(� ¼ 1; 2) in a two-leg ladder with interwire distance g and
dipolar interactions VðrÞ ¼ d1d2ð1–3cos2�Þ=r3. (b)–(d) Sketch
of phases (see the text): (b) dimer crystal in a lattice with spacing
�=2 and hopping energy t�; (c) dimer liquid; (d) trimer liquid.
(e)–(f) Numerical results for density distributions n� vs position
x in the presence of an optical lattice along the wires [see (b)]
and weak harmonic confinement, showing trimers. Parameters
[see also Eq. (1) and the text]: g ¼ �=2, hopping asymmetry
t2=t1 ¼ 0:01, d1=d0 ¼ 3, d2=d0 ¼ 0:5 with d20 ¼ t1g

3; the

curvature of the harmonic potential is K=t1 ¼ 0:03 (see
the text). Particle numbers N�: (e) N2 ¼ 2N1 ¼ 12;
(f) N2 ¼ 2N1 þ 2 ¼ 14; as a reference, blue points denote
2n1. The trap center is at x=ð�=2Þ ¼ 60.
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fermionic or bosonic composite particles, where repulsive
intrawire interactions ensure collisional stability. In par-
ticular, we prove that a gas of trimers made of two particles
on one wire and one in the other may be stabilized in these
systems [Fig. 1(d)]. Both dimer and trimer liquids may be
pinned by a weak period potential commensurate with
the density, leading to a Luttinger staircase of quasi-1D
composite crystals [14]. By numerical simulations, we
show that these exotic quantum phases are robust to con-
ditions of trapping in parabolic finite-size potentials and
number fluctuations in thewires: Unusual ‘‘wedding-cake’’
structures are formed where heavy composite particles are
flanked by lighter ones [Figs. 1(e) and 1(f)].

Our starting point is the HamiltonianH ¼ P
�H� þH12

for the dynamics of molecules in the configuration of
Fig. 1, with � ¼ 1; 2 , H� the single-wire term

H� ¼
Z

dxc y
�ðxÞ

�

� @
2

2m�

@2x þU�ðxÞ
�

c �ðxÞ

þ d2�
8�

Z
dxdx0

1

jx� x0j3 n�ðxÞn�ðx
0Þ; (1)

and H12 ¼ ðd1d2Þ=ð8�Þ
R
dxdx0Vðx� x0Þn1ðxÞn2ðx0Þ the

interwire coupling, with Vðx� x0Þ ¼ ½1–3cos2ð�Þ�=½g2 þ
ðx� x0Þ2�3=2 showing a short-distance interwire attraction.
Here, m� and d� are the mass and the dipole strength,

respectively, and c � (c y
�) are fermionic or bosonic anni-

hilation (creation) operators, with n�ðxÞ ¼ c y
�ðxÞc �ðxÞ;

U�ðxÞ ¼ U�sin
2ð2�x=�Þ represents an underlying peri-

odic potential, as usually provided by an optical lattice
[15] with wavelength � and depth U�; � is the angle
between particles in different wires, with distance g
(Fig. 1). The 1D Hamiltonian H is valid for interparticle

distances n�1
� � ðd2�=@!?Þ1=3 with !? the frequency of

transverse confinement provided by, e.g., a 2D optical
lattice. For LiCs, RbCs, and KRb molecules with d1 ¼
5:6, 1.25, and 0.5 Debye, respectively, and !? ¼ 2��
100 kHz, ðd2�=@!?Þ1=3 is of the order of 360, 130, and
70 nm, respectively [7]. In addition, d1d2=g

3 <U�

[16]. Similar setups may be obtained on chip-based
microtraps [17].

In Ref. [14], it is shown that, in the absence of an optical
lattice (U� ¼ 0) and of interwire interactions, the dynam-
ics in each wire is described by an effective Tomonaga-
Luttinger liquid (TLL) theory with Hamiltonian [18]

H � ¼ @v�

2�

Z
dxf½@x#�ðxÞ�2=K� þ K�½@x��ðxÞ�2g:

Here v� and K� ¼ ð1þ 0:73n�R�Þ�1=2 are the effective
sound velocity and the TLL parameter, respectively
[14], with R� ¼ m�d

2
�=ð2�@2Þ the intrawire dipole

length, and #� and �� represent long-wavelength
density and phase fluctuations, respectively [18]. For
finite interactions, Eq. (1) is then effectively described
by H ¼ P

�H � þH 12, with H 12 ¼ H f þH b.

Here, in the weak coupling regime we obtain H f ¼
� d1d2

24g2�3

R
dx@x#1ðxÞ@x#2ðxÞ for the quadratic forward-

scattering part of the interactions [18], by approximating
the interwire interaction with its zero-component Fourier
transform[18];H b is the backscattering part, with a typical
sine-Gordon-type form, to be discussed below. The effect of
H f is to modify the effective TLL parameters, whileH b

can induce novel pairing instabilities. Here, we first discuss
the case of two identical (balanced) coupled wires and then
the more general case of (unbalanced) wires with different
densities, molecular masses, and interactions.
In the balanced case, the quadratic part

P
�H � þH f

of H can be diagonalized by introducing standard

charge and spin fields, #c;s ¼ ð#1 � #2Þ=
ffiffiffi
2

p
[19], leading

to a description in terms of coupled TLLs with effective
parameters Kc;s. For weak interactions we estimate

Kc;s ¼ K1½1� �12K1=v1��1=2, �12 ¼ d21=ð24�2
@g2Þ. The

term H b has the sine-Gordon-type form H b / � n2
1
d1d2

12g2�R
dx cos½2 ffiffiffi

2
p

#sðxÞ�, and, in agreement with Berezinskii-

Kosterlitz-Thouless theory [18,20], it is relevant, thus
opening a spin gap (e.g., pairing), if Ks < 1; this condition
is always satisfied and shows that, similar to the 2D case,
pairing of molecules across the wires is always favored in
1D, even for an infinitesimally small attraction between the
wires with g; R� � n�1

� . The role of dipolar interactions is
evident in the charge sector: In contrast to models with
attractive contact interactions such as the Hubbard model
[18], hereKc can be much smaller than 1; as an example, in
the strongly interacting regime n�R� � 1, where dimers
are well approximated by tightly bound composite parti-
cles with effective mass M ¼ 2m and dipole strength

D ¼ 2d, Kc ’ 2=ð1þ 5:8n�R�Þ1=2. As a result, the many-
body ground state shows a crossover from a dimer
liquid (DL) with dominant pair correlations DðxÞ ¼
hc y

1;ic
y
2;ic 1;iþxc 2;iþxi � jxj�1=Kc for Kc > 1 to a charge-

density wave (CDW) with dominant density correlations
GðxÞ ¼ hniniþxi � jxj�Kc for Kc < 1; ni ¼ ni;1 þ ni;2. In
this regime, the CDW can be pinned by a very shallow
optical lattice commensurate with the particle density,
stabilizing a Luttinger staircase [14] of dimer crystals
(see [19] for more details).
We verify numerically these predictions in the deep

lattice regimeU=Er � 1, with Er the lattice recoil, where
an appropriate description is given in terms of an aniso-
tropic extended Hubbard model [21]:

Ĥ ¼ �X

�;i

t�ðcy�;ic�;iþ1 þ H:c:Þ � 2d1d2
g3

X

i

n1;in2;i

þX

i<j

�

d1d2Vijðn1;in2;j þ n2;in1;jÞ þ
X

�

d2�n�;in�;j

ðj� iÞ3
�

;

which we analyze by using a quasi-exact density-matrix-
renormalization-group technique [22]. Here, Vij describes

the anisotropic part of the dipolar interaction, and t� ¼ 1
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sets the energy scale. In the balanced case, d� ¼ d and
n� ¼ n. The field theoretical description of the anisotropic
extended Hubbard model in terms of continuum fields is
equivalent to the one in the limit of a shallow lattice given
above, and we thus expect a similar qualitative behavior.

Figure 2 shows the phase diagram for a commensurate
density n� ¼ 0:2. By fixing g ¼ �=4 and increasing d, we
find first a crossover from a TLL of dimers (DL) to a CDW
and then a Berezinskii-Kosterlitz-Thouless–type pinning
quantum phase transition to a dimer crystal (DC) with
n� ¼ 1=5 (phase boundaries are discussed in Ref. [19]).
Examples of DðxÞ are plotted in Fig. 2(b) for all three
phases, where the dash-dotted line marks the transition
from power-law to exponential decay. We also calculate
the spin gap �s, by performing a finite-size scaling of
�sðLÞ ¼ ELðN;NÞ � ELðN þ 1; N � 1Þ, with ELðM;M0Þ
the ground state energy at finite size L in the sector with
n1 ¼ M, n2 ¼ M0, for different densities and g [inset in
Fig. 2(a)]. We find that a finite gap is present in the entire
phase diagram, as expected, although it is small for weak
interactions due to the Berezinskii-Kosterlitz-Thouless
scaling �s / exp½��d2� [18].

The unbalanced case presents unconventional instabil-
ities. As shown in Ref. [13], the Haldane expansion of
density operators in a two-component TLL generates an
infinite series of massive terms coming from different
combinations of vertex operators

H b¼
X

p;q2N

Gp;q

Z
dxcos½2xðpkF1�qkF2Þ

þ2ðp�1�q�2Þ�;

where Gp;q are model-dependent coefficients and

kF� ¼ �n�. With the exception of the simplest case
p ¼ q ¼ 1, these terms are usually negligible from a
renormalization group point of view. However, we find
that strong dipolar interactions drastically enhance the
effect ofH b [19], allowing the formation of multiparticle
composites [13], or multimers, made of p (q) particles on
the upper (lower) wire. In particular, composite objects
with p ¼ 1may become particularly stable, corresponding
to a population ratio n2=n1 ¼ � 2 N; in such a situation,
analogous to the above discussion of dimers, a term inH b

with the sine-Gordon-type formG�;1

R
dxcos½2ð�#1�#2Þ�

may become relevant and stabilize a multimer liquid,
uniquely identified by the finite gap associated with the
bound-state formation and an algebraic decay of multimer
correlations hMyð0ÞMðxÞi, M ¼ ðc 1Þ�c 2, while the
single-particle and dimer correlations DðxÞ decay expo-
nentially. However, qualitative estimates (see [19]) indi-
cate that comparatively large interaction strengths are
needed in order to stabilize such a liquid, and the critical
strength increases with increasing �. Thus, below, we focus
on � ¼ 1, and we investigate numerically the possibility to
realize a trimer liquid (TL) by considering the anisotropic
extended Hubbard model with both interaction and hop-
ping asymmetry, quantified by the ratios d2=d1 and t2=t1.
To get guidance on possible trimer instabilities, we first

compute the binding energy of the three-body problem:
�B ¼ limL!1½ELð1; 1Þ þ ELð0; 1Þ � ELð1; 2Þ�. Based on a
Born-Oppenheimer approach [23], we expect a sizable
binding in the regime t1 � t2 and d1 * d2, where a fast
particle in wire 1 binds two repulsive heavy molecules in
wire 2. Numerical examples of �B vs t2=t1 are given in the
inset in Fig. 3, for a few values of d2, d1, and g ¼ �=2, as
trimers are unfavored for too large or too small interwire
distances [19]. In particular, for strong attraction with
g � �, the formation of a dimer plus an unpaired particle
is favored (see also the discussion of phase separation
below). We have further investigated the phase diagram
in the low-density limit (n2 ¼ 2n1 ¼ 0:2 and 0.1) as a
function of d1 and d2 for system sizes up to L ¼ 120 using
the density-matrix-renormalization-group technique.
The TL phase is characterized by an exponential decay
of both DðxÞ and single-particle correlation function

C�ðxÞ ¼ hcy�;ic�;iþxi, whereas the trimer correlatorT ðxÞ ¼
hcy1;icy2;icy2;iþ1c2;iþxþ1c2;iþxc1;iþxi decays algebraically.

This is in contrast to the case of two coupled TLLs, where
no correlation is exponentially suppressed. The phase dia-
gram for d1 ¼ 6d2, n2 ¼ 0:1 is plotted in Fig. 3 (see also
[19] for the dependence on d1=d2): The TL extends in a
broad region and survives even for comparatively small
interaction strength and interaction asymmetry, albeit in
both cases small hopping rates t2 	 0:2 are needed.
Sample correlation functions for both TL and 2TLL are
plotted in Figs. 3(b) and 3(c). For large interactions
d1d2=g

3 � t�, microscopic phase separation can occur.
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FIG. 2 (color online). (a) Phase diagram in the balanced case
with d� ¼ d, t2 ¼ t1, and n� ¼ 0:2 on a lattice with spacing �=2
and d20 ¼ t1ð�=2Þ3. Green triangles, red circles, and blue squares

are numerical results for DL, CDW, and DC phases, respectively;
dashed and dashed-dotted lines are qualitative phase boundaries.
Inset: Scaling of the dimer-pairing spin gap �s as a function of
d2 for several example densities n� and interwire distances g:
[n� ¼ 0:2, g ¼ 0:35�] (red points), [0.4, �=2] (green triangles),
and [0.2, �=2] (black diamonds). (b) Dimer correlation function
DðxÞ vs x in the phases of (a), with g=ð�=2Þ ¼ 0:5, n� ¼ 0:2.
Top to bottom (continuous lines): d=d0 ¼ 0:5 (DL), 1.3 (CDW),
and 2.2 (DC); the dashed-dotted line is the CDW-DC quantum
phase transition at �x�25=4.
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The latter corresponds to the formation of a gas of strongly
bound, mutually repulsive dimers across the wires, coex-
isting with a gas of unpaired molecules in wire 2; see [19].

Effect of the trap.—We have investigated the fate of
these exotic trimer bound states in the lattice under
conditions of harmonic trapping in finite-size potentials

with Hamiltonian Ĥt ¼ ðK=L2ÞPiniðL=2� iÞ2, with K
the curvature. We characterize the TL phase in inhomoge-
neous trapped systems via the local order parameter �ni ¼
2n1;i � n2;i, describing the deviations between the density

of the majority and minority components [19]. Trimers
exist if �ni � 1. We find that trimers are remarkably
robust to the presence of high-density, finite-size effects
and fluctuations in particle numbers in the wires. The
general situation is one where composite particles with a
larger mass (e.g., trimers) occupy the central region of the
trap and are flanked by lighter particles, being dimers or
single excess particles. This determines an unusual
‘‘wedding-cake’’ structure in the density profile, reminis-
cent of that observed with a cold atom with contact inter-
actions [15]. Figures 1(e) and 1(f) show example results of
the density profile in the trap, in the presence of composite
trimers for a case of an exactly matching number of

particles in the two wires, and a situation where the particle
number in wire 2 is larger by 20%. In both cases, we find a
well-defined region at the trap center where trimers are
formed, with �ni � 10�8.
Significant asymmetry in dipoles and mass is obtained in

mixtures of, e.g., LiCs and RbCs molecules trapped in
independent optical lattices, where a weak optical lattice
in the wire direction provides additional tuning of the
(effective) mass. Alternatively, single-species molecules
can be prepared in different internal (e.g., rotational, vibra-
tional) states with different dipole moments [8,24]. For a
1D lattice in the wire direction, the effective mass is tuned
via internal-state-dependent tensor shifts [24,25]. All
phases discussed above can be detected via the measure-
ment of decay of correlation functions [see, e.g., Figs. 3(b)
and 3(c)], using, e.g., direct in situ imaging techniques
[26]. Particle correlations across the wires will be detected
via in situ imaging [26] as well as noise correlation mea-
surements [15]. In addition, the TL, DL, and DC may be
spectroscopically probed [13]. For example, molecular
dimers with sizable, spectroscopically resolvable gaps
�s * 1 	K are obtained by trapping, e.g., LiCs molecules
in a deep 2D optical lattice with spacing �=2 ¼ 400 and
trapping frequency !? ¼ 2�� 100 kHz.
The realization of the above scenario in polar molecule

experiments will lead to the first observation of trimers in
the many-body context with cold gases.
We thank E. Burovski and A. Chotia for discussions

and E. Ercolessi and F. Ortolani for discussions and for
providing the density-matrix-renormalization-group code.
This work was supported by MURI, AFOSR, EOARD,
IQOQI, the Austrian FWF, the EU through NAME-QUAM,
COHERENCE, and AQUTE.
Note added.—After completion of this work, we became

aware of the related work [27] on few-body bound states of
polar molecules in coupled tubes.
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