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Density functional resonance theory (DFRT) is a complex-scaled version of ground-state density
functional theory (DFT) that allows one to calculate the in-principle exact resonance energies and

lifetimes of metastable anions. In this formalism, the energy and lifetime of the lowest-energy resonance

of unbound systems is encoded into a complex ‘“‘density’’ that can be obtained via complex-coordinate
scaling. This complex density is used as the primary variable in a DFRT calculation, just as the ground-
state density would be used as the primary variable in DFT. As in DFT, there exists a mapping of the
N-electron interacting system to a Kohn-Sham system of N noninteracting particles. This mapping
facilitates self-consistent calculations with an initial guess for the complex density, as illustrated with an

exactly solvable model system.
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Density functional theory (DFT) [1-3] provides one of
the most accurate and reliable methods to calculate the
ground-state electronic properties of molecules, clusters,
and materials from first principles. It is one of the work-
horses of computational quantum chemistry [4]. In addi-
tion, DFT’s time-dependent extension (TDDFT) [5] can
now be applied to a wealth of excited-state and time-
dependent properties in both linear and nonlinear regimes
[6]. When the N-electron system of interest has no bound
ground state, however, neither DFT nor TDDFT can be
applied in a straightforward way to calculate properties of
long-lived metastable states such as resonance energies and
lifetimes. A correct DFT calculation converges to the true
ground state by ionizing the system, thus leaving no reli-
able starting point for a subsequent TDDFT calculation on
the N-electron system. In practice, a finite simulation box
or basis set can make the system artificially bound [7,8],
but information about the relevant lifetimes is lost in the
process.

We address here this fundamental limitation of ground-
state DFT and propose a solution.

Consider a system of N interacting electrons in an
external potential #(r), with a ground-state electron density
i(r) = (Fa(r)|¥° where |¥° is the many-body
ground-state wave function and A(r) = YV  8(r — §,) is
the density operator. The potential, #(r), is set to be every-
where positive and go to a positive constant C as |r| — oo,
such that ©(r) can support a bound ground state with
energy E > 0. Next, we ask how the ground-state electron
density changes when a smooth step is added to o(r) at a
radius |R| that is larger than the range of #(r). The step is
such that the new potential v(r) coincides with ©(r) for
Ir] < |R| but goes to zero at infinity instead of going to a
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positive constant. Since v(r) is everywhere positive and
goes to zero at infinity, all N electrons tunnel out of the
steps, and v(r) supports no bound states. The correct
ground-state energy E — 0% as all electrons leave the
system with zero kinetic energy, and the new density,
n(r), is delocalized through all space. In practical calcu-
lations, however, v(r) and ¥(r) cannot be distinguished if
IR| is beyond the size of the simulation box. The result
provided by ground-state DFT with such a simulation box
and using the exact exchange-correlation functional
(which should give the in-principle exact ground-state
energy) is not E but £ > 0, and the density obtained is
7i(r), as if the system were bound. Even when the simula-
tion box is large enough to include the steps, use of a finite
basis set of localized functions will artificially bind
all electrons. Clearly, such calculations do not provide
approximations to the true ground-state energy and
density of v(r) but to those of its lowest-energy resonance
(LER).

The purpose of this Letter is to establish an analog of
Kohn-Sham (KS) DFT that provides the in-principle exact
LER density along with its energy and lifetime for any
finite |R|. This analog is motivated by the one-to-one
mapping between complex-scaled external potentials and
the associated complex LER density functions [9]. As
|R| — o0, the results coincide with those of standard KS
DFT. For higher-energy resonances, TDDFT is needed as a
matter of principle [10,11].

First, we note that, as |R| — co, the complex density
ny(r) associated with the LER of

A,=T+V,+ jdrﬁ(r)v(r) (1)
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becomes equal to the complex density 7iy(r) associated to
o(re’?). In Eq. (1), T = — 13 | V2 is the kinetic energy
operator, and V,, = Vil — r;|”! is the electron-
electron interaction (atomic units are used throughout).
To find ny(r), we complex-scale H, by multiplying all
electron coordinates by the phase factor ¢?, diagonalize
the resulting non-Hermitian operator H ?,, and calculate the
bi-expectation value of A(r) as

ny(r) = (5lamvg), 2

where |WX) and (V4| are the right and left eigenstates
corresponding to the complex eigenvalue of H? that has
the smallest positive real part among all eigenvalues in the
nonrotating spectrum of H?. For a detailed review of this
technique and related methods in non-Hermitian quantum
mechanics, see Refs. [12,13]. The computational cost of
this prescription scales exponentially with the number of
particles. Since ny(r) — 7iy(r) as |[R| — oo, and since there
is a one-to-one correspondence between n,(r) and v(re'?)
[9,14], the complex energy of the LER is a functional of n,,
Ey[n,], and goes to E (not E), as |R| — oo. Its lifetime L is
given by [—2Im(E,)]™!, and, for any finite |R],

Elng] = Elng) = 5 £7'(ny) G

where the resonance energy £ tends to E as |R| — oo.
According to the complex variational principle of
Ref. [9], the one-to-one mapping between ny(r) and
v(re'?) applies to complex densities that can be obtained
via Eq. (2) from an antisymmetric N-electron wave func-
tion (i.e., they are N-representable complex densities).

To build a complex analog of Kohn-Sham DFT using
ny(r) as the basic variable, we first map the system of
interacting electrons [whose LER density is 7n,(r)] to one
of N particles moving independently in a complex ‘““Kohn-
Sham” potential, v/(r), defined such that its N occupied
complex orbitals {¢?(r)} yield the interacting LER
density via ng(r) = XN (p?"1i(r)|4?F). In Moiseyev’s
Hermitian representation of complex scaling [15], the
complex Kohn-Sham equations are

hy =& —hy =27} (Re(qsf’))_

A ! < ! wl=0 (4
<h2 + 27';1 l’ll - &; Im((ﬁ?) ( )
where h, = —1cos(20)V? + Re[vf(r)] and hy =
1 sin(20)V?2 + Im[v¢(r)]. The set of {&;} and {r;} provides
the orbital resonance energies and lifetimes of the Kohn-

Sham particles.
Second, we write Ey[ny] as

Eglng] = T?[n,] + [ drng()v(re’)

+ Efi[ng] + Efclng] )

in analogy to standard KS DFT and require T%[n,] =
e 2T [ny] and Ef[ng] = e "’ Ey[ny], where Ty[n,] and
Eylng] are the standard noninteracting kinetic and Hartree
functionals evaluated at the complex densities. Without an
explicit expression for E%[ny], however, the total energy
cannot be calculated via Eq. (5). Related work by
Ernzerhof [14] and physical intuition suggest that bound
ground-state functionals are applicable here. They are, in
any case, the most natural candidates. Equation (5) then
defines EY.[n,]. The complex variational principle [13],
along with the assumption that the orbitals used to con-
struct the density can be expanded in an orthonormal basis,
leads to the Euler-Lagrange equation

SEg[ny] .
61’[9

M j drny(r) = 0. ©)

Performing the variation in Eq. (5) and comparing with
Eq. (4) leads to an expression for the Kohn-Sham potential
that is again analogous to that of standard KS DFT:

v{(r) = v(re’) + e Poylnylr) + viclnyl®), (7

where v [n,)(r) = SES ]/ 8ny(0)]y g,

The simplest case where all essential aspects of this
formalism can be illustrated is a system of two interacting
electrons moving in a one-dimensional potential that sup-
ports only metastable states. We study a Hamiltonian
where the electrons interact via a soft-Coulomb potential
of strength A:

2 2
H= Z[—ld—z + v(xl-)] + #
Sk 2 dx; VIt G = x)?
using v(x) = a[z'_?:l(l + e 2elxr (A=l o=/b] g
parent potential #(x) = a(l — ¢ *'/%) goes to a as x —
*+o00, but v(x) goes down to zero at x ~ *d.

Exact solution via the two-electron wave function.—The
complex-scaled Hamiltonian H, = H({x;} — {x;¢'’}) was
diagonalized with the Fourier grid Hamiltonian [16] and
finite difference methods. The numerically exact ny(x) was
calculated via Eq. (2). The complex density n4(x) depends
on the value of 6 (see Fig. 1), but, for a large enough

number of grid points, the energy does not. In the
complex-scaling method, the resonance energies are

®)
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FIG. 1. Exact two-electron complex densities associated with

the LER of v(x) when using different scaling angles (a = 4,
b=05c=4d=2and A =1).
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FIG. 2. The real and imaginary parts of E, in the model
Hamiltonian of Eq. (8) at various values of A (joined by lines)
calculated exactly with complex scaling, a first-order correction
to the noninteracting energy, and our DFRT exchange-only self-
consistent method (¢ =4, b =05, c=4,d=2,and A = 1).

precisely those that remain stationary as 6 changes [13].
Figure 2 shows the energy for 0 < A < 1.

Exact KS solution.—Two noninteracting electrons in the
potential indicated by solid lines in Fig. 3 have the same
ng(x) as calculated above to one part in 10° (in the sense
that the space integral of the square of the difference
between their real or imaginary parts is less than 10°).
When ny(x) is set to integrate to the number of electrons
(2, here), we verify that this potential is given by

v0(x) = 20 V2ny(x)
' 2\/”0(16)

where ey — 2i7! is the highest occupied complex orbital
energy (in this case, the only one). This is in exact analogy
to real KS potentials for bound two-electron systems where
Eq. (9) follows from taking the first functional derivative of
the von Weizsacker functional [17].

Exchange.—For two-electron systems, the exchange
functional is known in terms of the classical Hartree
functional, and Egs. (4) and (7) were solved employing
E{[ng] = — L Ef[ng] = — e "Ey[n,]. The complex KS
equations can be solved self-consistently with an initial
guess for n,. Starting with the noninteracting complex
density, the self-consistent field (SCF) calculations con-
verged in 4-5 iterations. The resulting complex energies
are plotted in Fig. 2 along with the exact results. For
comparison, we also plot the results from calculating the
first-order perturbation theory correction to the exact

— eyt 2i7;,1, )

FIG. 3. The real and imaginary parts of the complex KS
potential for the LER of 2 soft-Coulomb interacting electrons
in the model potential, Eq. (8). The dashed lines are the real and
imaginary parts of the complex-scaled parent potential #(x) (6 =
035, a=4,b=05,c=4,d=2,and A = 1).

solution of the complex-scaled two-electron problem. The
latter two yield identical answers for the resonance energies
and extremely close answers for the lifetimes for all A in the
range 0 <A <<1. Thus, neglecting correlation, we find the
average error is ~14% for the real part and ~35% for the
imaginary part of the total energy. We also compare with
standard scattering calculations using the close-coupling
equations under the bound state approximation [18,19].
The resonance energy is predicted by this method with an
error of 22%, comparable to our density functional reso-
nance theory (DFRT) exchange-only results.
As in standard KS DFT, total energies are given by

N
Eglng] = Z(Si = 2it; 1) + Efy[ng]

i=1

- fdrvflx(r)ng(r). (10)

We point out that the 6 independence of the energy is
preserved by the SCF procedure (see Table I). As the
grid size increases, the dependence on 6 becomes negli-
gible. This is important because, within a SCF DFRT
calculation, one is always solving the one-body complex
KS equations. For these equations, one should be able to
efficiently use a large enough basis set or a fine enough grid
to extinguish most of the numerical # dependence. Thus,
this well-known drawback of the complex-scaling tech-
nique [20-22] is outdone by the benefit of never having
to deal with N-particle wave functions but just one-body
(complex) densities.

Correlation.—It is of interest to calculate the exact
correlation potential, which we do by subtracting the
Hartree-exchange contribution from the exact KS poten-
tial. The individual Hartree-exchange and correlation po-
tentials are shown in Fig. 4. To interpret the features in
these complex potentials, it is useful to distinguish between
two regions. As the interaction between electrons is turned
on and A increases from O to 1, the region around the
central well is shifted up in the real part of the Kohn-
Sham potential. This behavior is also seen in standard
KS DFT and serves to shift up the position of the non-
interacting orbital energies (in that case, their real part).

TABLE I. Two-electron resonance energy values in the model
Hamiltonian of Eq. (8) calculated via exchange-only DFRT. As
the grid spacing decreases, numerical dependence on 6 practi-
cally disappears (a =4,b=0.5,c=4,d=2,and A = 1).

Grid 0 Re(E) Im(E)

(N = 299) 0.27 4.998 95 —0.014958 6
0.35 4.99933 -0.0144161
0.43 4.99962 —0.0139792

(N = 1299) 0.27 5.001 82 —0.0161045
0.35 5.00198 —0.015984 8
0.43 5.002 00 —0.0159513
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FIG. 4. The individual contributions to the Kohn-Sham poten-

tial from Hartree exchange and correlation (6 = 0.35, a = 4,
b=05c=4,d=2and A = 1).

However, both the real and imaginary parts of the complex
Kohn-Sham potential have a second region outside the
central well that shows a dramatic oscillatory structure
arising purely from the fact that the state is unbound. It
is already known that the decaying oscillations in the tails
of the complex LER wave function are governed by the
lifetime of the resonance [23]. These oscillations serve to
produce the correct asymptotic behavior in the interacting
complex density.

Orbital energies.—Although the ionization energy of
our two-electron system is strictly zero, it is tempting to
define I, = Ey(N = 1) — E4(N = 2) and check whether it
equals minus the highest occupied KS orbital energy, as
Koopmans’ theorem for DFT would suggest. For the pa-
rameters used in Figs. 1-4, Eo(N = 1) = 1.629 — 0.003:
and Ey(N = 2) = 4.127 — 0.0144, but the exact KS eigen-
value is 2.065 — 0.006i. Therefore, in this case, the highest
occupied molecular orbital (HOMO) energy of the KS
system is not equal to —/I4. This occurs because there is
more than one decay channel. When the decay is restricted
to a single channel, the HOMO energy can be related to the
difference between the metastable complex LER energy
and the threshold energy. For example, in a system like N,
that decays to N,, the HOMO energy of DFRT equals
[—A — (I'/2)i], where A is the negative electron affinity
of N, (or the ionization potential of N, ) and I' is the width
of the N, resonance. Note that, for purely bound ground
states, I' = 0, and one recovers Koopmans’ theorem for
DFT.

We are working on the implementation of DFRT to
calculate the lifetime of molecular metastable anions.
The method is also applicable to molecules connected to
metallic leads, as in molecular electronics. Ernzerhof and
co-workers have developed an approach for that purpose
where complex absorbing potentials are added within a
complex-DFT framework [14,24]. However, we emphasize
that the complex potentials in DFRT are the result of a

variational calculation, and they are obtained self-
consistently for the N-electron system treated as isolated,
rather than added to the Hamiltonian from the start to
model an open system.

DFRT should also be applicable to study shape and
Feshbach resonances in low-energy electron scattering
processes [25-27] of growing interest in biological systems
[28-30], atmospheric sciences, lasers, and astrophysics
[31-34].

In summary, DFRT provides an unambiguous prescrip-
tion for calculating negative electron affinities based on a
complex-scaled version of standard ground-state DFT.
This complex-scaled version has been cast in a way that
is analogous in practice to KS DFT. Results on a model
system suggest that the same machinery that has been
developed for KS DFT yields accurate resonance energies
and lifetimes in DFRT. It remains to be seen if common
approximations to Exc[n] are able to capture the important
effects that determine properties of real transient anions. A
more detailed study of the complex density function and
various DFRT identities is forthcoming.

In addition to the varied practical applications of the
formalism, DFRT provides a general theoretical frame-
work that allows one to calculate both bound and unbound
properties. Since it reduces to standard DFT when the
complex transformation is removed, DFRT can be used
as a tool to shed light on DFT and TDDFT. For example,
one can explore exact properties of functionals, such as
integer discontinuities, across a wide range of both bound
and unbound systems; the response of the complex density
could reveal metastable excitations previously hidden in
standard linear response TDDFT; derivatives of the com-
plex density function could extend chemical reactivity
theory to metastable systems. Therefore, DFRT promises
new perspective on several active research areas in the
quantum theory of many-body systems.
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