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It is well known that a local, unitary Poincaré-invariant 2D quantum field theory with a global scaling

symmetry and a discrete non-negative spectrum of scaling dimensions necessarily has both a left and a

right local conformal symmetry. In this Letter, we consider a chiral situation beginning with only a left

global scaling symmetry and do not assume Lorentz invariance. We find that a left conformal symmetry is

still implied, while right translations are enhanced either to a right conformal symmetry or a left Uð1Þ
Kac-Moody symmetry.
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Introduction.—A two-dimensional (2D) Poincaré and
scale invariant quantum field theory has at least four global
symmetries under which the light cone coordinates trans-
form as

x� ! x� þ a; xþ ! xþ þ b;

x� ! ��x�; xþ ! �þxþ:
(1)

If, in addition, one posits that the theory is unitary and that
the spectrum of the dilation operator for �þ ¼ �� is dis-
crete and non-negative, then it was shown in Ref. [1] that
the four global symmetries are enhanced to left and right
infinite-dimensional conformal symmetries. Explicit coun-
terexamples indicate that the enhancement need not occur
if the dilation spectrum is not discrete.

In recent years, interest in 2D quantum field theories
with other types of global scaling symmetries has arisen in
a variety of contexts ranging from condensed matter to
string theory. In this Letter, we consider the special case
with three global symmetries:

x� ! x� þ a; xþ ! xþ þ b; x� ! �x�; (2)

comprising two translational symmetries and a chiral
‘‘left’’ dilational symmetry. Our assumptions will include
locality, unitary, and a discrete non-negative dilational
spectrum but not Lorentz invariance. In an argument par-
allel to the one in Ref. [1], we find that these three global
symmetries are sufficient to conclude that there are (at
least) two infinite-dimensional sets of local symmetries.
One of these is a left local conformal symmetry which
enhances the left dilational symmetry. The other enhances
the right translational symmetry and can be either a right
conformal symmetry or a left current algebra.

It is surprising that such a powerful conclusion can be
reached from such minimal assumptions. However, the
element of surprise is potentially reduced by the fact that
at this point there is no definite example of a quantum field
theory which nontrivially satisfies all of our stated assump-
tions. (One possible example might be given by the con-
tinuum limit of the large N chiral Potts model, as discussed

in Ref. [2].) On the other hand, possible interesting ex-
amples are suggested by the recent appearance of warped
AdS3 geometries in a variety of string theoretic investiga-
tions including the holographic duals of the so-called
dipole deformations of 2D gauge theories [3–8] and the
near-horizon geometries of extreme Kerr black holes
[9–11]; see also [12–16]. Warped AdS3 has an SLð2; RÞ �
Uð1Þ isometry group which contains (2). As these spaces
are continuous deformations of AdS3 spaces with CFT2

duals, we expect that their holographic duals exist and are
deformed CFT2s with the symmetries (2). However, at
present it not clear to what extent these duals obey all the
assumptions stated below. In this Letter, we concentrate on
the pure field theory analysis and leave these interesting
issues to future investigations.
From dilations to Virasoro.—We wish to consider local,

unitary, translationally invariant quantum field theories in
2D flat Minkowski space with a (linearly realized) chiral
global scale invariance as in (2).
We do not assume Lorentz invariance, an action, or a

conserved symmetric stress tensor. The operators generat-
ing left-moving (i.e., x�) translations and dilations will be
denoted H and D, respectively, while right-moving trans-
lations are denoted �P, where the bar in general denotes
right-moving charges. By assumption these operators an-
nihilate the vacuum. Their commutation relations are

i½D;H� ¼ H; i½D; �P� ¼ 0; i½H; �P� ¼ 0: (3)

We moreover assume, following Ref. [1], that the eigen-
value spectrum �i of D is discrete and non-negative and
there exists a complete basis of local operators�i such that

i½H;�i� ¼ @��i; i½ �P;�i� ¼ @þ�i;

i½D;�i� ¼ x�@��i þ �i�i;
(4)

and
R
C d�i ¼ 0 for any closed or complete spacelike

contour C. Note that ‘‘local operators’’ as here defined
do not involve explicit functions of x�. We will refer to
�i as the weight of the operator �i. Translational plus
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dilational invariance implies the vacuum two-point func-
tions of the f�ig obey

h�iðx�; xþÞ�jðx0�; x0þÞi ¼
fijðxþ � x0þÞ
ðx� � x0�Þ�iþ�j

(5)

for some a priori unknown functions fij.

Noether’s theorem implies that each of the operators
H, D, and �P is associated to a conserved Noether current
with components denoted h�, d�, and p� whose dual
contour integral, e.g.,

H ¼
Z

dxþhþ �
Z

dx�h� (6)

then gives the global charges. A proof in the present
context is reviewed in the appendix. All of these currents
have an ambiguity under shifts of the form �@�O, where
O is a more general type of operator potentially involving
explicit functions of x�:

Oðxþ; x�Þ ¼ X
i

fiðxþ; x�Þ�iðxþ; x�Þ: (7)

We also show in the appendix that the shifts can be chosen
so that the currents satisfy canonical commutation rela-
tions, viz.

i½H; h�� ¼ @�h�; i½ �P; h�� ¼ @þh�; (8)

i½H;p�� ¼ @�p�; i½ �P; p�� ¼ @þp�; (9)

i½H; d�� ¼ @�d� � h�; i½ �P; d�� ¼ @þd�: (10)

This implies that h� and p� are local operators, but the
term proportional to h� in i½H; d�� implies that d� must
have explicit dependence on the x� coordinate. The ap-
pendix demonstrates that the currents can be chosen to be
eigenoperators of D. The weights of the global charges (3)
then imply

i½D; h�� ¼ x�@�h� þ 2h�;

i½D; hþ� ¼ x�@�hþ þ hþ;
(11)

i½D;p��¼ x�@�p�þp�; i½D;pþ�¼ x�@�pþ; (12)

i½D;d��¼ x�@�d�þd�; i½D;dþ�¼ x�@�dþ: (13)

We see that dþ and pþ are weight 0, d�, hþ, and p� are
weight 1 and h� is weight 2. (In an ordinary 2D conformal
field theory, dþ, hþ, and p� all vanish, pþ ¼ Tþþ, d� ¼
x�T��, and h� ¼ T��.)

Let us now find the explicit coordinate dependence of
d� and write the current in terms of local operators.
Defining s� by

d� ¼ x�h� þ s� (14)

and using (8)–(10), we find that

i½H; s�� ¼ @�s�; i½ �P; s�� ¼ @þs�: (15)

We conclude ðsþ; s�Þ are local operators with weights
ð0; 1Þ. Conservation of the d� and h� currents imposes

hþ ¼ �@�sþ � @þs�: (16)

We have not at this point fixed all the shift freedom in the
currents. In particular, we may shift away s�:

h� ! h� � @�s�; d� ! d� � @�ðx�s�Þ; (17)

which remains consistent with the commutators (8)–(13) as
well as current conservation. Equations (14) and (16) now
take the simpler form

dþ ¼ x�hþþ sþ; d� ¼ x�h�; hþ ¼�@�sþ: (18)

Now, we can use the general form of the two-point
functions given by (5). Bearing in mind the fact that sþ
is a local operator of weight 0, we must have

hsþsþi ¼ fsþðxþÞ; (19)

which implies @�sþ ¼ hþ ¼ 0. Conservation of h� then
reduces to @þh� ¼ 0 or, equivalently, h� ¼ h�ðx�Þ. This
fact immediately leads to the existence of an infinite set of
conserved charges. Define

T� ¼�
Z
dx��ðx�Þh�; �J� ¼

Z
dxþ�ðxþÞsþ; (20)

where �ðx�Þ and �ðxþÞ are smooth functions. In particular,
H ¼ T1 and D ¼ �J1 þ Tx� . Notice that, while h� cannot
vanish if we are to have a nontrivial H operator, sþ could
be identically zero. sþ � 0 leads to the existence of even
more local symmetries unrelated to the originally posited
global symmetries. Given that sþ is independent of xþ and
transforms as a zero weight operator under D, we have

i½H; �J�� ¼ 0; i½D; �J�� ¼ 0: (21)

The Jacobi identity implies that the commutator of an
operator annihilated by H (such as �J�) and a local field

(such as h�) must be a local field itself. Therefore, using
(21), we have

i½ �J�; h�� ¼ @2���; (22)

where �� is a local operator of weight zero. This implies

@��� ¼ 0. Immediately, we get

i½ �J�; T�� ¼ 0: (23)

This means we can minimally set sþ ¼ 0.
The action of H ¼ T1 and D ¼ Tx� on h� implies

i½T1;T��¼T��0 ; i½Tx� ;T��¼T���0x� ; �0 �@��:
(24)

This in turn implies that the action of T� on h� is

i½T�; h�� ¼ �@�h� þ 2�0h� þ @2�O�: (25)
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The scaling symmetry plus locality implies O� must be of

the form O� ¼ �O1 þ �0O0 with O1 a local operator of

weight one. As it cannot depend on xþ, O0 must be a
weight zero constant. Integrating both sides with respect
to dx��ðx�Þ gives

i½T�; T� � ¼ T�0��� 0� þ
Z

dx��@2�O�: (26)

Antisymmetry under the exchange of � $ � then requires
that O1 ¼ 0 and

@2�O� ¼ O0@
3��: (27)

Defining c ¼ 24�O0 we end up with the following com-
mutations relations for the charges T�:

i½T�; T� � ¼ T�0��� 0� þ c

48�

Z
dx�ð�00� 0 � � 00�0Þ: (28)

We recognize this as the algebra of the left-moving con-
formal generators on the Minkowski plane with central
charge c.

Enhancement of right-moving translations to a local
symmetry.—Notice that up until now we have not made
much use of translational invariance in the xþ dimension.
In particular, the above results also apply when we do not
possess this symmetry. Let us add p� to the game.

In this case, the key observation is that pþ is a zero
weight local operator, as implied by (8)–(13). This means

hpþpþi ¼ fpþðxþÞ: (29)

Because a Hermitian operator with a vanishing two-point
function is trivial, we learn that @�pþ ¼ 0. Current con-
servation then implies @þp� ¼ 0. It follows that

pþ ¼ pþðxþÞ; p� ¼ p�ðx�Þ: (30)

We cannot have both pþ ¼ 0 ¼ p� as the charge �P is
generically nonzero, although from what we have seen so
far one of them could vanish. We now discuss all
possibilities.

p� ¼ 0 ) right-moving Virasoro algebra.—In this case
we have infinitely many charges given by

�T � ¼
Z

dxþ�ðxþÞpþ: (31)

Since �T1 ¼ �P, we have

i½ �T1; �T�� ¼ � �T�0 : (32)

This, in turn, constraints the action of �T� on pþ to be

i½ �T�; pþ� ¼ �@þpþ þ 2�0pþ þ @þ �O�: (33)

If we compare this expression with (25), we see that we are
very close to the previous situation for T�. Multiplying by

�ðxþÞ and integrating both sides of this equation, we get

i½ �T�; �T� � ¼ �T�� 0��0� þ
Z

dxþ�@þ �O�: (34)

Antisymmetry with respect to exchange of � and � then
implies that �O� is an even number of derivatives of �. The
term with no derivatives can be eliminated by a constant
shift of pþ. Terms with four or more derivatives would
violate the Jacobi identity. We conclude (shifting pþ by a
constant if needed)

i½ �T�; �T� � ¼ �T�0��� 0� þ �c

48�

Z
dxþð�00� 0 � � 00�0Þ: (35)

We recognize this as the algebra of the right-moving
conformal generators on the Minkowski plane with central
charge �c. (Interestingly, it is this right-moving Virasoro
that gives the entropy in Kerr-CFT [9].)
Of course, the vacuum will not in general be invariant

under the global SLð2; RÞR subgroup. Acting withD andH
on �T� we can check that i½ �T�; h�� ¼ @2���. But �� must

be a weight zero operator, so we are left with i½ �T�;h��¼0.
The upshot is that ½ �T�; T� � ¼ 0, as expected.
pþ ¼ 0 ) left-moving current algebra.—In this case we

have infinitely many left-moving charges

J� ¼ �
Z

dx��ðx�Þp�ðx�Þ: (36)

Because the zero mode J1 acts as @þ, we must have
i½J1; p�� ¼ 0. This implies ½J1; J�� ¼ 0 and hence

i½J�; p�� ¼ @�M�; (37)

where the operator M� is, by locality, a linear function of

�. Now we are in a position to repeat the arguments used
around (25). Multiplying by c ðx�Þ, integrating over x�,
and invoking antisymmetry and the Jacobi identity, we find

i½J�; Jc � ¼ k

4�

Z
dx�ðc 0�� �0c Þ; (38)

where the constant k parameterizes the central element.
This is a Uð1Þ Kac-Moody current algebra.
We also need the ½T�; J�� commutator. The fact that

½J1; T�� ¼ 0 implies

½T�; p�� ¼ �@�p� þ �0p� þ @�N� (39)

with the operator N� linear in �. The Jacobi identity with a
third operator T� then implies N� ¼ f@�� for some con-

stant f [17,18]. If f is nonzero, the current p� is not a
dimension one chiral current. However, we may then shift
h� by a k-dependent multiple of @�p� so that p� is a good
dimension one current. This shift affects the central charge
of T�. Performing this transformation leaves us with the

standard commutator

i½T�; J�� ¼ J���0 : (40)

It may seem rather strange to have a left-moving Kac-
Moody current algebra whose zero mode generates right
translations. However, reminiscent structures have ap-
peared before. In the Kaluza-Klein circle reduction of
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AdS3 to AdS2, one begins with two Virasoros and ends
with a single left-moving Virasoro and current algebra
associated to the Kaluza-Klein Uð1Þ [19]. The left current
algebra zero mode J0 descends from the right Virasoro zero
mode in AdS3. Related structures have appeared in Kerr-
CFT, where left Virasoro and right current algebra zero
modes are sometimes identified [20], as well as in the study
of asymptotic symmetries of warped AdS3 [21].

Nonminimal p� � 0, pþ � 0.—In this case left and
right currents decouple. The commutators i½ �P; �T�� ¼ �T��0

implies i½ �T�; p�� ¼ @���, for some local ��. Further-

more, because �T� does not transform under D and p� is a

weight 1 operator, �� must be weight 0. Therefore

i½ �T�; J�� ¼ 0; (41)

implying that the conserved charges can be analyzed sepa-
rately as above.

In summary, left translational and dilational symmetries
together with right translations imply the existence of (at
least) two sets of infinite-dimensional algebras. On the
left we always find a local conformal symmetry, while
the right translational current is enhanced either to a local
right conformal symmetry or a left Uð1Þ current algebra.

Noether’s theorem.—Here we will prove Noether’s theo-
rem for H and P and put the corresponding currents in
canonical ‘‘diagonal’’ form. We assume the existence of a
unitary Hamiltonian H whose commutator with any op-
erator obeys

i½H ; O� ¼ dO

dt
� @O

@t
; (42)

where the last derivative acts on any explicit coordinate
dependence in O. Conserved charges are defined as any

operator Q such that dQ
dt ¼ 0. Locality implies

Q ¼
Z 1

�1
dxqtðx; tÞ: (43)

Charge conservation is then

dQ
dt

¼
Z

dx
qt
dt

¼ 0; (44)

implying qt
dt ¼ � qx

dx , for some qx. ðqx; qtÞ is the sought after
conserved Noether current associated to Q.

We further assume the existence of a conserved momen-
tum charge P commuting with H and obeying

i½P ; O� ¼ dO

dx
� @O

@x
(45)

for any operator O. From these we construct left and right
translation charges 2H ¼ H � P and 2 �P ¼ H þ P . If a
conserved charge Q commutes with both H and �P, the
associated Noether current must obey

i½H; q�� ¼ @�q� � @�F; i½ �P; q�� ¼ @þq� � @�G;
(46)

where @� are total derivatives with respect to x� ¼ t� x
and F and G can be expanded

F ¼ X
i

fiðxþ; x�Þ�i; G ¼ X
i

giðxþ; x�Þ�i: (47)

The Jacobi identity relates the coefficients fi and gi as an
integrability condition implying the existence of a set
of functions ri such that gi ¼ @þri and fi ¼ @�ri. Now
let us use the shift freedom q� ! q� � @�R, with R ¼P

iriðxþ; x�Þ�i. We then obtain the canonical form of the
commutators

i½H; q�� ¼ @�q�; i½ �P; q�� ¼ @þq�: (48)

In particular, this applies to q� ¼ h�; p�. Notice that, for
any local (coordinate independent) operator�, we can still
shift q� ! q� � @�� and preserve the above commuta-
tion relations.
Now we show, following Ref. [1], that the currents can

also be made dilation eigenoperators. Current conservation
and the commutation relations (3) imply

i½D; h�� ¼ x�@�h� þ �ðh�Þh� � @�Oh;

i½D;p�� ¼ x�@�p� þ �ðp�Þp� � @�Op;
(49)

where �ðpþ; p�; hþ; h�Þ ¼ ð0; 1; 1; 2Þ. The Jacobi identity
can be used to show that Oh and Op are local operators

with no explicit coordinate dependence. This means they
are expandable in the discrete basis (4) as Oq ¼ P

iai�i

for q ¼ h; p, where �i has weight �i. Let us now shift

q� ! q� � @�
X
i

bi�i; bi ¼ ai
wðqþÞ � �i

; (50)

for �i � wðqþÞ. This shift eliminates all the�i in Oq with

weights �i � wðqþÞ. Operators with weight equal to
wðqþÞ cannot appear in Oq by the assumption (4) that

the spectrum of D is discrete and diagonalizable. We are
therefore left with the canonical form of the commutators:

i½D; h�� ¼ x�@�h� þ �ðh�Þh�;
i½D;p�� ¼ x�@�p� þ �ðp�Þp�:

(51)

A slight variant of the preceding arguments can be used
on the current d� associated to D to set

i½H; d�� ¼ @�d� � h�; i½H; d�� ¼ @þd�; (52)

i½D; d�� ¼ x�@�d� þ �ðd�Þd�; (53)

where �ðdþ; d�Þ ¼ ð0; 1Þ. We note that demanding that the
current or charge commutators take this canonical form
does not fix all the ambiguity in the former. Some of the
remaining shift freedom is exploited here, around Eq. (17),
to shift away s�.
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