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The stationary points of the potential energy functionV are studied for the�4model on a two-dimensional

square latticewith nearest-neighbor interactions.On the basis of analytical and numerical results,we explore

the relation of stationary points to the occurrence of thermodynamic phase transitions.Wefind that the phase

transition potential energy of the�4 model does in general not coincide with the potential energy of any of

the stationary points of V. This disproves earlier, allegedly rigorous, claims in the literature on necessary

conditions for the existence of phase transitions. Moreover, we find evidence that the indices of stationary

points scale extensively with the system size, and therefore the index density can be used to characterize

features of the energy landscape in the infinite-system limit. We conclude that the finite-system stationary

points provide one possible mechanism of how a phase transition can arise, but not the only one.
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The stationary points of the potential energy function or
other classical energy functions can be employed to calcu-
late or estimate physical quantities. Well-known examples
include transition state theory or Kramers’s reaction rate
theory for the thermally activated escape from metastable
states, where the barrier height (corresponding to the dif-
ference between potential energies at certain stationary
points of the potential energy function) plays an essential
role. More recently, a large variety of related techniques
has become popular under the name of energy landscape
methods [1], with applications to many-body systems as
diverse as metallic clusters, or biomolecules and their
folding transitions. While the mentioned applications focus
mostly on the numerical investigation of finite systems, the
analysis of stationary points has also proved useful for
analytical studies of N-body systems in the thermody-
namic limit. One field of research where such methods
have been fruitfully applied is disordered systems under-
going a dynamical glass transition [2].

Another line of research based on stationary points but
focusing on equilibrium phase transitions in the thermody-
namic limit N ! 1, dates back to about the same time [3].
This approach, originally formulated in terms of topology
changes of configuration space submanifolds, can be re-
phrased in terms of stationary points of the potential energy
function V, i.e., configuration space points qs satisfying
rVðqsÞ ¼ 0. The underlying idea can be understood as
follows [4]: Thermodynamic equilibrium properties are
encoded in the thermodynamic limit value of the micro-
canonical configurational entropy

sNðvÞ ¼ 1

N
ln
Z
�
�½VðxÞ � Nv�dx ¼ 1

N
ln
Z
�v

d�

jrVj ; (1)

where � denotes configuration space and dx its volume
measure, �v � � is the hypersurface of constant-potential
energy V ¼ Nv, and d� stands for the (N � 1)-
dimensional Hausdorff measure on �v. At a stationary
point, we have rV ¼ 0, the integrand on the righthand
side of (1) diverges, and we may expect the stationary point
to give an important contribution to the integral. Indeed, it
has been shown that, for finite N, every stationary point qs

of V induces nonanalytic behavior in sNðvÞ precisely at the
potential energy of the stationary point, v ¼ VðqsÞ=N [5].
Nonanalyticities of thermodynamic functions are hall-

marks of phase transitions. Having observed that stationary
points of V cause nonanalyticities in the finite-system
entropy sN, it seems natural to ask whether they may also
be responsible for nonanalytic behavior in the infinite-
system entropy, i.e., for the occurrence of phase transitions.
While for finite N every stationary point of V induces a
nonanalyticity in sN , the majority of the nonanalyticities
does not survive the thermodynamic limit. Two questions
turn out to be central to the understanding of these obser-
vations. (1) Under what conditions can the nonanalytic
behavior of sN , induced by a stationary point of V, survive
the thermodynamic limit? A possible scenario has been
depicted in [5,6], and it turns out that the Hessian deter-
minant of the potential energy function, evaluated at the
stationary points, is crucial for discriminating whether or
not the stationary points can induce a phase transition in
the thermodynamic limit. For some models this insight has
proved particularly useful in that it facilitates the analytic
computation of phase transition energies even in the ab-
sence of an exact thermodynamic solution [7]. (2) Are
stationary points necessary for a phase transition to take
place? Or is there another mechanism, distinct from the
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one sketched above, which can give rise to a phase tran-
sition? This question was addressed by a theorem in [8],
claiming that, for a large class of systems with short-range
interactions, the presence of stationary point is indeed
necessary for a phase transition to occur.

The model study presented in this Letter puts this al-
leged relation of stationary points of the potential energy
function V and thermodynamic phase transitions to the
test. We apply three different methods to extract informa-
tion about the stationary points of the potential energy
function of the two-dimensional nearest-neighbor �4

model. This model is known to have a continuous phase
transition which is in the universality class of the two-
dimensional Ising model but, in contrast to that model, is
amenable to energy landscape methods by virtue of its
continuous configuration space. The results from two com-
plementary numerical techniques, as well as a rigorous
analytical upper bound, all provide evidence that stationary
points occur only at nonpositive potential energies.

The implications of this finding are significant. Among
other things, they show by counterexample that the theo-
rem on the relation between stationary points and thermo-
dynamic phase transitions, allegedly proven in [8], is
incorrect. Instead, we observe that, even for short-range
interacting systems, thermodynamic phase transitions can
occur at energies not related to any stationary points. As a
consequence, further mechanisms of how phase transitions
arise, possibly not related to finite-system stationary
points, must exist, and we will comment on possible sce-
narios towards the end of this Letter.

Two-dimensional nearest-neighbor �4 model.—On a
finite square lattice � � Z2 consisting of N ¼ L2 sites, a
real degree of freedom �i is assigned to each lattice site
i 2 �. By N ðiÞ we denote the subset of � consisting of
the four nearest-neighboring sites of i on the lattice under
the assumption of periodic boundary conditions. The po-
tential energy function of this model is given by

VðqÞ ¼ X
i2�

�
�

4!
q4i �

�2

2
q2i þ

J

4

X
j2N ðiÞ

ðqi � qjÞ2
�
; (2)

where q ¼ ðq1; . . . ; qNÞ denotes a point in configuration
space � ¼ RN [9]. J > 0 determines the coupling strength
between nearest-neighboring sites and the parameters
�, �> 0 characterize a local double-well potential expe-
rienced by each degree of freedom.
In the thermodynamic limit N ! 1 this model is known

to undergo, at some critical temperature Tc, a continuous
phase transition, in the sense that the configurational ca-
nonical free energy fðTÞ is nonanalytic at T ¼ Tc. The
transition is from a ‘‘ferromagnetic’’ phase with nonzero
average particle displacement to a ‘‘paramagnetic’’ phase
with vanishing average displacement (see [12] for more
details as well as for Monte Carlo results).
Instead of Tc, it is more adequate for our purposes to

compare to the critical potential energy per lattice site vc of
the transition [13]. Both quantities are unambiguously
related to each other in the thermodynamic limit via the
caloric curve vðTÞ, independently of the statistical en-
semble used. The critical potential energy vc is less fre-
quently studied, in fact the only data we could find in the
literature are from Monte Carlo simulations of fairly small
system sizes N ¼ 20� 20 in [10], with parameter values
� ¼ 3=5, �2 ¼ 2, and J ¼ 1. We mostly use the same
parameter values in the following. Since the value of vc

is a crucial benchmark when relating our stationary point
analysis to the phase transition of the �4 model, we have
performed standard Metropolis Monte Carlo simulations
for somewhat larger system sizes up to 128� 128 and 107

lattice sweeps. We have sampled, among other observ-
ables, the canonical average hvi of the potential energy
per particle, and plots of some of the Monte Carlo results
are shown in Fig. 1. The quality of the data is sufficient to
establish, beyond any reasonable doubt, a critical potential
energy vc � 2:2 well above zero.
Numerical continuation method.—For J ¼ 0, i.e., in the

absence of coupling, the stationary points qs of the poten-
tial V in (2) can be calculated analytically without
difficulty, obtaining the 3N solutions qs ¼ ðqs1; . . . ; qsNÞ
with qsj 2 f0;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6�2=�
p g. Knowledge of these solutions
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FIG. 1 (color online). Monte Carlo results for the two-dimensional �4 model (2) with � ¼ 3=5, �2 ¼ 2, and J ¼ 1. System sizes
N ¼ L� L are plotted with L ranging from 32 to 128. Left panel: the canonical average hvi of the potential energy per lattice site as a
function of the temperature T. Right panel: The canonical specific heat c ¼ ðhV2i � hVi2Þ=ðNT2Þ, plotted as a function of hvi. The
lines between the data points serve as a guide to the eye.
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permits us to continue them to J > 0 by numerical
continuation; see [14] for a description of the homotopy
continuation method we have actually been using. Under
certain conditions on the initial (decoupled) and final
(coupled) potentials, this method is known to yield all
stationary points of V. However, since the number of sta-
tionary points for J ¼ 0 grows exponentially with the
number of lattice sites, such an analysis is restricted to
fairly small system sizes.

We have used the homotopy continuation method to
compute all stationary points of V for various values of J
and system sizes up to 4� 4, and the results show the
following features. First, upon increasing the coupling
constant J, the number #ðqsÞ of stationary points dramati-
cally decreases from 3N for J ¼ 0 to only 3 stationary
points for larger J. This behavior is illustrated for
N ¼ 3� 3 in the left panel of Fig. 2. Second, the stationary
values vs ¼ VðqsÞ=N, i.e., the potential energy per lattice
site evaluated at a stationary point, is found to be never
larger than zero. This is illustrated for N ¼ 4� 4 in the
right panel of Fig. 2.

Newton-Raphson method.—We use Monte Carlo dy-
namics in configuration space to generate a large set of
initial states, and apply the Newton-Raphson method to
these initial states to find stationary point of V. In contrast
to the homotopy continuation method, there is in general
no way of knowing whether all stationary points have been
found. An advantage, however, is that the Newton-
Raphson method can be applied to system sizes much
larger than 4� 4.

We have used the routine NEWT from [15], a globally
convergent version of the Newton-Raphson method, to
compute stationary points of �4 lattices of sizes up to
32� 32. For small J, the number of stationary points for
such system sizes is huge and only a tiny fraction of them
can be tracked down. For sufficiently large J [16], however,
only three stationary points are found: the two global

minima qs ¼ ðqs1; . . . ; qsNÞ where all qsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�2=�

p
, re-

spectively � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�2=�

p
, and a stationary point of index 1 at

qsj ¼ 0 for all j. Moreover, we again find that all stationary

values obey vs � 0.
Analytical upper bound on the stationary values.—The

stationary points of the potential V are the solutions of

@VðqÞ
@qk

¼ �

3!
q3k þ ð4J ��2Þqk � J

X
j2N ðkÞ

qj ¼ 0: (3)

Although it is not feasible to solve this set of N coupled
nonlinear equations explicitly, the potential energy at a
stationary point can be determined by rewriting the poten-
tial (2) in the form

VðqÞ ¼ X
i2�

qi

�
�

4!
q3i þ

�
4J ��2

2

�
qi � J

2

X
j2N ðiÞ

qj

�
: (4)

Then, substituting (3) into (4), we obtain the potential
energy at a stationary point qs ¼ ðq1; . . . ; qNÞ,

VðqsÞ ¼ � �

4!

X
i2�

q4i : (5)

Since � � 0, the potential energy per lattice site at any
stationary point is bounded above by zero,

vs ¼ VðqsÞ=N � 0: (6)

Comparison with earlier results.—Our findings, and, in
particular, the fact that the stationary values vs are non-
positive, disprove earlier results on the relation between
thermodynamic phase transitions and stationary points of
V. These earlier results were phrased in terms of topology
changes of certain submanifolds in configuration space, but
with the help of Morse theory we can rephrase all state-
ments in terms of stationary points.
In 2004, Franzosi and Pettini announced, and allegedly

proved under some conditions on the potential V, a neces-
sary condition for a thermodynamic phase transition to
occur [8]. In the language of stationary points, their claim
can be phrased as follows: If there exists an interval [a, b]
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FIG. 2 (color online). Numerical results from the homotopy continuation method. Left panel: The number of stationary points of V
for N ¼ 3� 3, plotted logarithmically as a function of the coupling J. Right panel: For all 10 288 973 stationary points qs of a 4� 4
lattice with J ¼ 0:2, the scaled Hessian determinant D ¼ j detH VðqsÞj1=N is shown vs the stationary value vs ¼ VðqsÞ=N,
demonstrating that vs � 0 for all qs.
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such that, for all system sizes N larger than some constant
N0, the stationary values vs ¼ VðqsÞ=N corresponding to
the stationary points qs of V all lie outside that interval,
then in the thermodynamic limit neither a first- nor second-
order thermodynamic phase transition can occur at critical
potential energies vc 2 ða; bÞ.

In short, stationary points in the vicinity of some vc are
claimed to be necessary for a phase transition at vc. The
nearest-neighbor �4 potential (2) satisfies all requirements
on V demanded by this theorem. Accordingly, based on
the fact that all stationary values are nonpositive (6), the
theorem asserts that the critical potential energy of the
second-order phase transition of the model cannot be posi-
tive. This prediction is in contradiction to the thermody-
namic properties of the model and the theorem in [8] is
falsified by means of a counterexample.

A numerical study of the configuration space topology
of the two-dimensional nearest-neighbor �4 model was
published by Franzosi et al. in [11]. The authors reported
results for the Euler characteristic � (a topological invari-
ant) of the constant-potential energy shells in configuration
space, finding a pronounced kink of � as a function of v
in the vicinity of the transition energy (Fig. 3 of [11]). From
the absence of stationary points at positive energies, Morse
theory allows one to conclude that �ðvÞ is rigorously
constant for v > 0. The kink observed in Fig. 3 of [11] is
therefore an artifact of the numerical method used.

More on the shape of the energy landscape.—Contrary
to the claims in [8,11], we have seen that the energy land-
scape in the vicinity of the critical potential energy vc of a
phase transition can be locally trivial, i.e., free of stationary
points with potential energies vs in the vicinity of vc. For
v < 0 and large system sizes, however, when stationary
points abound, it is more difficult to explore the shape of
the energy landscape. As a first step towards this aim, we
study the properties of the stationary point qs ¼ ð0; . . . ; 0Þ,
corresponding to the largest stationary value vs ¼ 0. Its
index I, i.e., the number of negative eigenvalues of the
Hessian matrix of V evaluated at qs, characterizes the
change of the constant-energy shell around v ¼ 0. With
increasing system sizeN, we observe that the relative index
i ¼ I=N converges to a finite value, and this value

i1 ¼ limN!1i=N depends on the coupling J (see Fig. 3).
The existence of such a limiting value is a good starting
point for discussing the properties of the potential energy
landscape in the infinite-system limit. In fact, we can
deduce that the potential energy landscape does not ap-
proach a simple N-dimensional generalization of a double-
well potential in the large-system limit, as one might
naively have expected. Such a double well, having two
degenerate minima at the ground state energy and a sta-
tionary point of index I ¼ 1 at v ¼ 0, would yield i1 ¼ 0
for the stationary point qs ¼ ð0; . . . ; 0Þ.
Conclusions.—By analytical and numerical methods, we

have probed certain features of the potential energy land-
scape of the two-dimensional �4 lattice model. The mod-
el’s phase transition was found to occur at energies well
separated from the stationary values vs ¼ VðqsÞ=N of the
potential V (or, equivalently, from topology changes in
configuration space). These findings falsify a theorem put
forward in [8] which claims that stationary points qs with
stationary values vs ¼ vc are necessary for a phase tran-
sition to occur at a critical potential energy vc. Since our
results imply that the constant-potential energy shells are
simply connected for v � 0, the symmetry breaking phase
transition is found to be driven by a concentration-of-
measure effect, but is not related to the connectivity of
the underlying finite-system energy shells. In other words,
even if the integral on the right-hand side of (1) depends
smoothly on v, the limiting procedure N ! 1 can, con-
trary to the claim in [8], destroy this smoothness.
Accordingly, we conclude that the finite-system station-

ary points provide one possible mechanism of how a phase
transition can arise, but not the only one. If the stationary
points are at the basis of the transition, the earlier men-
tioned criterion [5,6] based on the Hessian determinant at
stationary points remains valid and can be applied to
analyze the phase transition. However, other scenarios
are possible and open up interesting perspectives. One
possibility is that, even if V has no stationary points
when considered on configuration space, it might have
such points when treated as a function of N complex
variables. If some of these stationary points, in the thermo-
dynamic limit, approach the real axis and satisfy the
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FIG. 3 (color online). Left panel: The relative index i of the stationary point qs ¼ ð0; . . . ; 0Þ, plotted as a function of the linear system
size L ¼ ffiffiffiffi

N
p

for various couplings J. From top to bottom: J ¼ 0:1, 0.36, 0.5, 0.64, 1, 2, 10. Right panel: The large-system limit i1 of
the relative index, plotted as a function of the coupling constant J.
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Hessian determinant criterion at the same time, they should
be capable of inducing a phase transition, despite the
absence of stationary points in the real (noncomplex)
configuration space. This and other alternative scenarios
could open up possibilities for deriving new criteria on the
existence or absence of phase transitions, as well as for
analytic methods for computing transition energies.
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