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The sub-Ohmic spin-boson model possesses a quantum phase transition at zero temperature between a

localized and a delocalized phase, whose properties have so far only been extracted by numerical

approaches. Here we present an extension of the Silbey-Harris variational polaron ansatz which allows

us to develop an analytical theory which correctly describes a continuous transition with mean-field

exponents for 0< s < 0:5. The critical properties, couplings, and observables we obtain show excellent

agreement with existing numerical results, and we give an intuitive microscopic description of the

changing correlations between the system and bath which suppress the spin coherence and drive the

transition.
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The spin-boson model (SBM) is one of the key models
for the study of decoherence, relaxation, and many other
effects which arise when a quantum system is coupled to
environmental degrees of freedom [1,2]. While nonequi-
librium dynamics are often of most relevance for the many
practical applications of the SBM [1–3], the model also
possesses rich ground state properties, including a quantum
phase transition that has recently become the subject of
intense research. This transition separates a degenerate
‘‘delocalized’’ phase from a doubly degenerate ‘‘local-
ized’’ phase in which the environment induces a sponta-
neous magnetization on the spin. This transition is
predicted to appear when the spin’s environment, modeled
in the SBM as a bath of harmonic oscillators, is described
by a spectral function Jð!Þ / !s with s � 1. In the litera-
ture, such environments are referred to as Ohmic (s ¼ 1)
and sub-Ohmic (s < 1). The details of the Ohmic transition
are well understood [1,2]; however, despite several sophis-
ticated numerical studies, a microscopic description of the
sub-Ohmic case has not yet appeared.

The quantum-classical mapping predicts that the sub-
Ohmic SBM should be equivalent to a classical Ising spin
chain with long-range interactions [4,5] and predicts a
continuous magnetic transition with mean-field critical
exponents for 0< s < 0:5. In Ref. [4], a continuous tran-
sition in the sub-Ohmic SBM was observed by using the
numerical renormalization group (NRG) technique for all
values of 0< s < 1, but the critical properties of the tran-
sition were found to be non-mean-field for 0< s < 0:5. It
was suggested that this implied a breakdown of the classi-
cal to quantum mapping, and some subsequent work has
supported this [6]. However, it is now believed that the
non-mean-field results found by NRG in 0< s < 0:5 are
incorrect and arise from the truncation of the number of
states Nb used to describe each oscillator in the Wilson
chain [7,8]. Recent numerical studies of the sub-Ohmic

quantum phase transition using quantum Monte Carlo cal-
culations [5], the sparse polynomial space approach [9],
and an extended coherent state technique have indeed
found mean-field critical exponents for 0< s < 0:5 [10].
In this Letter, we propose a variational ansatz for the

ground state of the sub-Ohmic SBM for 0< s < 0:5 which
allows an analytical, microscopic treatment of the transi-
tion. We show how distinctive types of system-bath corre-
lations characterize each phase and how they suppress spin
coherence. Understanding such system-bath correlations is
a central issue in designing error correction schemes in
quantum information processing and is also important in
the emerging fields of measures of non-Markovianity and
quantum metrology [11–13]. Our ansatz generalizes the
widely used variational method of Silbey and Harris, which
was successfully applied to the Ohmic transition [14] but
was shown to fail approaching criticality for sub-Ohmic
baths [15,16]. Our generalization fixes this problem and
thus might allow similarly generalized Silbey-Harris and
polaron master equations to accurately treat Ohmic
and sub-Ohmic baths at strong coupling and finite bias
and temperature [15,17,18], including the recently
observed ultraslow dynamics found in Ref. [19]. Im-
portantly, our method does not require any truncation of
the environment, an essential feature, as we shall show that
the number of environmental bosons diverges above the
transition. Our results agree extremely well with existing
numerical results, and give an intuitive microscopic de-
scription of the transition that pinpoints a numerical issue
that arises in naive numerical density matrix renormaliza-
tion group (DMRG) approaches to this problem, and
possibly several other numerical methods.
The spin-boson Hamiltonian can be written (@ ¼ 1) as

H ¼ � 1

2
��x þ 1

2
�z

X
l

glðal þ ayl Þ þ
X
l

!la
y
l al; (1)
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where �i are the usual Pauli operators, which describe a
tunneling two-level system (TLS), and the ‘‘environmental
bath’’ is modeled as a collection of oscillators, where al
and ayl are the bosonic annihilation and creation operators,

respectively, of bath modes with frequency !l. The tun-
neling amplitude of the TLS is �, and gl are the couplings
between the TLS and the bath modes. It is well established
that all effects of the bath on the reduced state of the TLS
are completed determined by the spectral function Jð!Þ ¼
�
P

lg
2
l �ð!�!lÞ [1,2]. Following Bulla et al. we consider

the spectral function Jð!Þ ¼ 2��!1�s
c !s�ð!c �!Þ

[20], where !c is the maximum frequency in the bath.
Super-Ohmic baths have s > 1, Ohmic baths s ¼ 1, and
sub-Ohmic baths s < 1.

By representing theþ1 and�1 eigenstates of �z as jþi
and j�i, respectively, our variational ansatz j�i is

j�i ¼ Cþjþi � j�þi þ C�j�i � j��i; (2)

where j��i ¼ exp½�P
lfl�ðal � ayl Þ�j0i and j0i is the

vacuum of the bath modes. This ansatz describes a super-
position of the localized states j�i which are correlated
(dressed) with bath modes displaced by fl�. It is a general-
ization of the variational wave function of Silbey and
Harris [14], in which the constants and displacements
were fixed to obey Cþ ¼ C� and flþ ¼ �fl�. As we shall
show, these constraints are broken in the localized phase,
and we shall henceforth refer to the ansatz of Eq. (2) as the
asymmetrically displaced-oscillator (ADO) state. The or-
der parameter of the localization (magnetic) transition is
the magnetizationM ¼ h�j�zj�i, which can be expressed
as M ¼ C2þ � C2�. By using this relation and the standard
properties of displaced oscillators, the ground state energy
EðMÞ ¼ h�jHj�i is given by

EðMÞ ¼ � 1

2
~�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
þð1þMÞ

2

X
l

ðflþgl þ f2lþ!lÞ

� ð1�MÞ
2

X
l

ðfl�gl � f2l�!lÞ: (3)

In Eq. (3), we have introduced a renormalized tunneling

amplitude ~� ¼ �exp½� 1
2

P
lðflþ � fl�Þ2�, which is a po-

laronic effect arising from the imperfect overlap of the
displaced-oscillator wave functions j��i which dress the
TLS states j�i. We nowminimize the energy at constantM
with respect to the displacements fi;l to obtain

fl� ¼ � glðM~��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
!lÞ

2!lð~�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
!lÞ

: (4)

These displacements are then substituted back into Eq. (3),
and the spectral function can be used to compute EðMÞ
exactly. For simplicity, we shall now develop the analytical
theory in the so-called scaling limit !c ! 1, although our
numerical results do not use this approximation. In this

limit, the ground state energy to leading order in �
!c

takes

the form

EðMÞ ¼ �~�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
��!c

2s
(5)

þ ��!cð1� sÞð1�M2Þ
2 sinð�sÞ

� ~�

!c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
�
s
; (6)

and the renormalized tunneling amplitude obeys the
implicit equation

~� ¼ �exp

�
��!1�s

c

Z !c

0

ð1�M2Þ!sd!

ð~�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
!Þ2

�
: (7)

For sub-Ohmic baths, one of the self-consistent solu-

tions of Eq. (7) is always ~� ¼ 0. This corresponds to the
complete localization of the TLS (M ¼ �1) and is made
self-consistent by the infrared divergence of the integrand

in Eq. (7) for s < 1 and ~� ¼ 0 [1,2,14–16]. For sufficiently

small �, there is also a finite solution for ~� [15,16], which
can be expressed analytically in terms of the Lambert W
function [21]. The ground state energy can now be ex-
pressed by using just the original system parameters and
M. Taylor-expanding EðMÞ about M ¼ 0, we find that for
small M the energy takes the Ginzburg-Landau form E ¼
c0ð�Þ þ c1ð�ÞM2 þ c2ð�ÞM4 þOðM6Þ, where cið�Þ are
constants for fixed �, !c, and �. This form for the ground
state energy guarantees a second-order magnetic transi-
tion; above a critical coupling �c, a magnetization grows

continuously with M / j�� �cj1=2 and the magnetic sus-
ceptibility � / j�� �cj�1 [22]. The critical coupling �c

is the coupling for which c1ð�cÞ ¼ 0. In the scaling limit,
this equation can be solved analytically to find

�c ¼ sinð�sÞe�s=2

2�ð1� sÞ
�
�

!c

�
1�s

: (8)

The values predicted from Eq. (8) agree well with those
obtained by the recent quantum Monte Carlo, NRG, and
sparse polynomial space approach studies and reproduces
the scaling �c / ð�=!cÞ1�s previously observed in other
approaches [4,5,9,15,16,20].
Observables.—We show in Fig. 1 that the magnetization

does indeed behave like M / ð�� �cÞ1=2 close to the
transition. The magnetization data are again in good agree-
ment with the quantum Monte Carlo and sparse polyno-
mial space approach results [5,9]. Figure 2 shows the
behavior of the coherence h�xi as a function of �. We
find that �x is always continuous at the transition, but
@h�xi
@� j�c

is discontinuous. In the scaling limit, the varia-

tional theory predicts h�xi ¼ e�ðs=2ð1�sÞÞ at the critical
point and is thus independent of �=!c. Above the transi-
tion, h�xi decays faster but persists well into the localized

PRL 107, 160601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

160601-2



phase. The persistence and the increasing value of h�xi
around the transition as s decreases appears to be generally
consistent with the dynamical NRG study of Anders, Bulla,
and Vojta [23], where it was found that a coherent tunnel-
ing survives well into the localized phase for 0< s < 0:5
and becomes more robust as s ! 0. Note that the position
of the cusps for s ¼ 0:4; 0:5 appear shifted from the values
predicted by Eq. (8) due to nonscaling limit corrections.
These corrections scale like ð�=!cÞ1�s, and for the pa-
rameters used here they can perturb the analytical results
for larger s.

Delocalized phase.—In the delocalized phase, the
physics of the ADO state is determined only by the

renormalization of ~� as we have M ¼ 0 and flþ¼�fl�.
The variational solution separates the bath into adiabatic
modes (A modes) and nonadiabatic modes (NA modes)
which have different responses to the renormalized TLS

tunneling. High frequency A modes ð!l � ~�Þ can adia-
batically adjust their displacements to maximize their in-
teraction energy with the TLS (fl� � �gl!

�1
l ) [1,2,15],

while slow NA modes (!l � ~�) cannot respond fast
enough to follow the tunneling, and their displacement is

suppressed at low frequency (fl� � �gl ~�
�1) [15,16].

From Eq. (7), one can see that this suppressed displace-

ment of NA modes permits a finite solution for ~� by
preventing the infrared divergence of the integrand in
Eq. (7) [15,16]. Looking at Eq. (2), one sees that although
the frequency dependence of the NA- and A-mode dis-
placements are different, all modes are correlated with the
TLS state, and the ground state is not separable into TLS
and bath states. Inseparability of the ground state into TLS
and bath states indicates the existence of quantum corre-
lations, or entanglement E, between the TLS and bath,
which can be quantified by computing the von Neumann
entropy of the reduced density matrix of the TLS [11]. This

is given by E¼�pþ logðpþÞ�p� logðp�Þ, where p�¼
1
2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�xi2þh�zi2

q
Þ. As shown in Fig. 3, entanglement

between the TLS and bath increases monotonically with �

due to the monotonic suppression of ~� in this phase by
dressing correlations [24].
Localized phase.—Above the transition (M � 0), we

find that a new energy scale appears in the problem. Modes

with!l�M~�ð1�M2Þ�1=2 continue to be adiabatic, while

nonadiabaticmodeswith!l � M~�ð1�M2Þ�1=2 nowhave
displacements which have the same sign and grow at low

FIG. 2 (color online). Expectation value h�xi as a function of
� for � ¼ 1 and !c ¼ 10. Cusps appear at the critical couplings
�c. The corresponding scaling limit critical couplings are in-
dicated by arrows.

FIG. 1 (color online). Magnetization M as a function of
ð�� �cÞ=�c for �> �c, � ¼ 1, and !c ¼ 10. For visibility,
the curves have been multiplied by 1, 2, 4, and 8 for s ¼ 0:1, 0.2,
0.3, and 0.4, respectively.

FIG. 3 (color online). Entanglement between the spin and
bosonic environment as a function of � for � ¼ 1 and !c ¼
10. The entanglement is defined here as the von Neumann
entropy of the reduced density matrix of the TLS. Maxima occur
at �c, and the predicted scaling limit critical couplings are
indicated by arrows.
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frequency, flþ ’ fl� ’ �Mgl!
�1
l . Because the nonadia-

batic mode displacements have the same sign, they are not
correlated with the state of the TLS, and the state of
the system becomes a product state of NA modes and the
correlatedTLS–A-modewave function. TheNA-modewave
function has a finite displacement, and this appears to
the TLS as an effective ‘‘mean-field-like’’ magnetic field
in the z direction. While the total average displacement
of NA modes is finite, there is an infrared divergence

of the occupation number of these modes, as
P

lhayl aliNA/
M2

R~�
0 d!!s�2. However, the uncorrelated NA modes do

not renormalize ~�, and the coherence of the ground state
remains finite at the transition, allowing M to grow contin-
uously above the transition.

As the magnetization increases, the NA-mode character
of the bath also increases, causing a monotonic decrease of
entanglement above the transition. This allows us to in-
tuitively understand the cusp in the entanglement shown in
Fig. 3, which was numerically observed in Ref. [24]. The
changing correlations also change the mechanism by
which the TLS coherence is suppressed. In the localized
phase, the growing NA-mode bias causes the effective
magnetic field seen by the TLS to point away from the x

axis, and, as the suppression of ~� due to dressing vanishes
(jMj ! 1) in this phase, h�xi is determined solely by
the rotation of the ground state to lie along the effective
NA-mode magnetic field.

DMRG ground state.—The observation of an infrared
divergence raises the question of whether simulations of
the ground state using a truncated Fock space for the
environment can converge above the transition. To explore
this, we simulated the ground state by using imaginary-
time TDMRG in conjunction with an exact mapping of the
environment onto a 1D harmonic chain, as recently used by
Prior et al. to look at real-time dynamics of open quantum
systems with TDMRG [3,25,26]. Figure 4 shows results
for the fidelity (overlap) between the ADO ansatz and the
DMRG ground state. In the delocalized phase the TDMRG
results converge very rapidly, and only the first few sites of
the harmonic chain are appreciably excited. The fidelity
with the ADO state is extremely high considering the
many-body nature of the system.

Transforming the ADO ansatz into the chain represen-
tation, we find that the average occupation of site n in the
chain NavðnÞ decreases rapidly in the delocalized phase,
and an accurate simulation of the ground state with a
truncated Fock space, as confirmed by the DMRG results,
is possible. However, as � approaches �c, the decay of
NavðnÞ along the chain becomes much weaker, and contri-
butions from many sites need to be included. Although
NavðnÞ is bounded along the chain, the convergence with
respect to chain length in the DMRG simulations becomes
much slower, and for a finite chain length we observe
a reduced fidelity as � ! ��

c . Above �c, the fidelity
suddenly becomes very small with increasing chain length.

This occurs because NavðnÞ actually diverges along the
chain in the magnetic phase, with our mapping predicting
that NavðnÞ / n1�2s as n ! 1 for finite M. The DMRG
approach uses a finite Nb to represent each oscillator of the
chain and cannot describe these diverging populations.
Consequently, the norm of the projection of the ADO
ansatz onto the truncated Fock space vanishes exponen-
tially with increasing chain size, leading to the behavior
shown in the inset in Fig. 4. The impossibility of finding a
truncated representation of the ground state in the Fock
basis also manifests itself through slow convergence of the
DMRG algorithm for �> �c.
DMRG in the Fock state basis of the harmonic chain

appears to be unable to describe the localized phase for
s < 1=2. However, the divergence of NavðnÞ is a result of
divergence of the NA-mode populations and could be
cured by a unitary transformation H ! UHU�1, where

U ¼ exp½�P
lðflþjþihþj þ fl�j�ih�jÞðal � ayl Þ�. This

generalized polaron transformation effectively absorbs
the mean-field displacement and dressing correlations in
a new displaced-oscillator basis, thus removing the boson
divergence and also greatly reducing the number of fluc-
tuations of A modes that then need to be captured by the
simulation method. This analysis confirms the idea origi-
nally proposed by Alvermann and Fehske that a unitary
transform can greatly speed up convergence of simulations
using truncated Hilbert spaces [9]; however, our micro-
scopically derived transformation is quite different from
that of Alvermann and Fehske, as it not only removes many
of the quantum fluctuations, it also provides an accurate
starting point for a more advanced method of determining

FIG. 4 (color online). Fidelity of the variational ansatz with the
ground state determined by DMRG as a function of � for � ¼ 1
and !c ¼ 10. The DMRG simulation used 100 sites; Nb ¼ 15
and 10 Schmidt coefficients were retained. At the critical cou-
pling, the fidelity drops suddenly from finite values to zero. The
inset shows the typically dramatic decrease in the fidelity with
system size above the transition. Inset data correspond to s ¼ 0:3
and � ¼ 0:0328 (�c ¼ 0:0316).
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the optimal basis of the simulation. Finally, we point out
that the unitary transformU is the formal basis for defining
an effective zeroth-order Hamiltonian which could be used
in a polaron master equation approach to nonperturbative
dynamics of multicomponent systems [17,18], extending
these methods to the full parameter regimes of Ohmic and
sub-Ohmic environments [15,16].

By generalizing the Silbey-Harris theory, we have given
a detailed analytical description of the competing system-
bath correlations which drive the quantum phase transition
in the sub-Ohmic SBM and have extracted the correct
mean-field critical exponents for 0< s < 0:5. All pre-
dicted observables were in good agreement with those
found by sophisticated numerical approaches, the behavior
of the coherences was given for the first time, and the
effective Hamiltonian theory suggested by this ansatz
should allow more efficient DMRG studies of this system
and the extension of polaron theory to sub-Ohmic
dynamics.
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