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We report the implementation of a 3-qubit quantum error-correction code on a quantum information

processor realized by the magnetic resonance of carbon nuclei in a single crystal of malonic acid. The

code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic

environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian.

We also experimentally demonstrate sufficiently high-fidelity control to implement two rounds of

quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic

resonance, a leading test bed for the implementation of quantum algorithms.
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Introduction.—One of the crucial requirements [1] for
universal quantum information processing (QIP) is the
ability to protect the fragile quantum information during
computation—either by encoding the information in sub-
spaces of the system’s Hilbert space where it is protected
from degradation by noise or by an active scheme that
detects and rectifies errors continuously or periodically.
This latter, active technique has been experimentally real-
ized in liquid state NMR [2–4] and ion-trap [5] implemen-
tations of a quantum information processor. In each of
these cases, a quantum error-correction code (QECC)
was used to protect against the particular errors present
in the respective systems, and it was shown that, even with
imperfect encoding and recovery operations, employing
quantum error correction is advantageous. Obviously, there
is a limit to how many control errors can be tolerated
before they overwhelm the error-correction protocol.
Thus, the ability to demonstrate error correction is a highly
relevant benchmark of high-fidelity coherent control.

A natural question to ask is whether one has high-
enough-fidelity control to perform multiple rounds of error
correction, as would be required in a realistic computation.
Of course, to usefully performmultiple rounds, one needs a
fresh supply of sufficiently pure ancillæ to ensure that
entropy flows in the proper direction. However, assuming
we have a fresh supply of ancillæ, is it possible, with the
current level of control, to perform meaningful multiple
rounds of quantum error correction?

In this Letter, we report on the implementation of a
3-qubit QECC that corrects phase errors induced by the
environment in a single-crystal solid state NMR system.
We also devise a way to experimentally determine the
entanglement fidelity of multiple back-to-back rounds of
error correction and use it to determine the entanglement
fidelity of two rounds of the 3-bit phase code. In light of

recent work on the characterization and control of such
systems [6–8], as well as state initialization [9,10], this
current Letter signifies an advancement of one of the
leading test beds for QIP ideas. The rest of this Letter is
organized as follows. First, we describe the solid state
NMR system and the sources of noise affecting the qubits.
We then describe the QECC implemented and show the
results from one and two rounds.
System and error models.—Building on the success of

liquid state NMR as a test bed of QIP ideas, solid state
NMR systems offer [7,11] intrinsically larger couplings,
longer coherence times, the ability to pump entropy out of
the system of interest into a spin bath, and the potential for
much higher initial polarizations. This comes at the cost of
a more complicated internal Hamiltonian, which makes the
system harder to control in practice.
The computational register under investigation is an

ensemble of molecular nuclear spins in a macroscopic
single crystal of malonic acid (C3H4O4). A small fraction
(� 3%) of the molecules is triply labeled with (spin- 12 )

13C

to form an ensemble of processor molecules, spatially
buffered from one another by molecules of the same com-
pound but with natural abundance (� 1%) carbon nuclei.
During computation, the processors are decoupled from the
100% abundant spin- 12 protons in the crystal by applying a

decoupling pulse sequence [12] to the protons. For this
3-qubit register, (dephasing) noise comes in the following
forms: (i) Coherent phase errors due to pulse implementa-
tion errors, phase transients, or unwanted evolution under
the natural Hamiltonian (e.g., under the Zeeman term).
These are unitary errors (that cause no loss of coherence)
and can therefore be inverted if tracked properly, but, in case
tracking that evolution is not possible, quantum error
correction becomes a valuable tool. (ii) Incoherent
phase errors due to Zeeman-shift dispersion or other
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inhomogeneities. The loss of coherence is over the en-
semble; eachmember of the ensemble sees a different value
for some coupled classical degree of freedom. Errors of this
nature have been dealt with using refocusing techniques
(e.g., spin echo) or by carefully designing the control fields
to generate the same evolution over the ensemble distribu-
tion of the inhomogeneous parameter. Quantum error cor-
rection can be usedwith, or in lieu of, these other techniques
to improve robustness to ensemble errors. (iii) Decoherent
phase errors due to a coupling between the system of
interest and environment—an uncontrollable quantum de-
gree of freedom—and loss of coherence occurs when this
environment is traced over after the interaction.

3-bit code.—The 3-bit repetition code was introduced by
Shor [13] as part of a 9-qubit code that is able to protect
against an arbitrary single-qubit error. The phase variant
[14] of the 3-bit repetition code encodes a single qubit in
three qubits as follows:

j0i ! j�0i ¼ j þþþi; j1i ! j�1i ¼ j ���i; (1)

where j�i ¼ j0i � j1i and the logical bases are denoted by
fj�0i; j�1ig. In the stabilizer formalism [15,16], the stabilizer
group generators for this code are fXXI; IXXg. This code
can be employed to correct for various sets of errors by
choosing different decoding circuits—for this work, we
design the decoding to correct for errors generated by the
set E ¼ fZII; IZI; IIZ; IIIg. That is to say, with the same
decoding circuit, the code corrects a coherent selective
phase rotation on one of the qubits,

Z�
1
:¼ e�i�=2ZII ¼ cosð�=2ÞIII� i sinð�=2ÞZII;

and/or the dephasing map on one of the qubits, due to
incoherent or decoherent errors:

��ð�Þ ¼ cos2ð�ÞI�I þ sin2ð�ÞZ�Z:
A quantum circuit that accomplishes [14] the encoding,

decoding, and error-correction steps is shown in Fig. 1(b).
The encoding process takes a qubit in the state �j0iþ�j1i,
as well as two ancillary qubits prepared in the j00i state,
and outputs the 3-qubit encoded state �j þ þþi þ �j �
��i. After the error channel, the recovery process decodes
the state on the information-carrying qubit, and the other
qubits carry syndrome information about the errors that
have occurred. The nondegeneracy of the code implies that
each of the error bases, in E, will leave a particular sig-
nature. It is straightforward to show that syndromes 00, 10,
01, and 11 correspond to the occurrence of errors III, ZII,
IZI, and IIZ, respectively.

The figure of merit used herein to judge the performance
of the code is the entanglement fidelity [17]. In particular,
we use the expression for the single-qubit average entan-
glement fidelity, which is experimentally accessible by
measuring the fraction of surviving signal given input
states X, Y, and Z [18].

Experiment.—The experiments were performed in a
static field of 7.1 T using a purpose-built NMR probe.

Shown in Fig. 2 is a proton-decoupled 13C spectrum,
following polarization transfer from the abundant protons,
for the particular orientation of the crystal used in this
experiment. A precise spectral fit gives the Hamiltonian
parameters (listed in the inset table in Fig. 2), as well as the
free-induction dephasing times, T�

2 , for the various transi-

tions; these average at �2 ms. The dominant contribution
[7] to T�

2 is the Zeeman-shift dispersion, which is largely

refocused by the control pulses. Other contributions are
from intermolecular 13C-13C dipolar coupling and, particu-
larly for Cm, residual interaction with neighboring protons
due to imperfect decoupling. The carbon control pulses are
numerically optimized to implement the required unitary
gates using the gradient ascent pulse engineering [19]
algorithm. A typical pulse is 1 ms long and is designed
[20] to have an average Hilbert-Schmidt fidelity of 99:8%
over appropriate distributions of Zeeman-shift dispersion
and control-fields inhomogeneity.
The system is initially prepared in the labeled pseudopure

state (PPS) [21–23]—expressed in the product opera-
tor formalism—�i ¼ 1

8 ½III þ �ðIþ ZÞðI þ ZÞX�, where

�� 10�5. The completely mixed component is ignored
for the rest of the discussion, as it does not participate in
the unital dynamics. This preparation is achieved by control
pulses and phase cycling (temporal averaging) and can be
thought of as a projection along ðIþZÞðIþZÞX.

FIG. 1. Shown are the implemented quantum circuits for:
(a) labeled PPS preparation procedure: a 3QCF is conjugated
by a unitary operation that encodes (and decodes) the labeled
pseudopure state j00ih00jX in the triple quantum coherence
j000ih111j þ j111ih000j; (b) the implemented quantum circuit
of a 3-qubit QECC, showing the encoding, decoding, and error-
correction steps. The top two qubits are initialized to the j00i
state, and the bottom qubit carries the information to be encoded.
After the decoding and correction operations, the bottom qubit is
restored to its initial state, while the top two qubits carry
information about which error had occurred; and (c) the proce-
dure for two rounds: Up prepares X, Y, or Z inputs, and Us ¼
fII; XI; IX; XXg toggles between the different syndrome subspa-
ces; i.e., the experiment is repeated 4 times, cycling through the
different Us, and then the results are added, similar to a standard
phase cycling procedure.
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As shown in Fig. 1(a), the phase cycling actuates a
triple-quantum-coherence filter (3QCF) [24] by exploiting
the n-proportional phase acquisition of n-coherence quan-
tum states under Z rotation. And conjugating the 3QCF
with transformations that encode (and later decode) the
ðI þ ZÞðI þ ZÞX coherence in the triple-quantum coher-
ence, j000ih111j þ j111ih000j, realizes an effective pro-
jector on the labeled PPS.

We first examine the performance of the 3-bit phase code
under the natural evolution of the system: between the
encoding and recovery operations, the system is left to
evolve, unobstructed under the full natural Hamiltonian,
both homonuclear and heteronuclear parts. Exaggerated
as it is, this is a useful test of the code’s ability to correct
for coherent errors from uncertainties in the natural
Hamiltonian or imperfect decoupling of the magnetic envi-
ronment. The experimentally determined entanglement fi-
delities are shown in Fig. 3, demonstrating the advantage of
quantum error correction. The syndrome information (inset
in Fig. 3) indicates that the dominant phase error is on the
methylene carbon, Cm. The nonmonotonicity of the unen-
coded and decoded data indicate that the error is, at least
partially, coherent. However, full simulation of the dynam-
ics of the carbon subsystem suggests a longer time scale for
the homonuclear coherent effects. Moreover, the time scale
of the revival of the signal is consistent with the coupling
strength between Cm and the methylene protons, which
leads us to conclude that this coupling is responsible for
the nonmonotonicity in the entanglement-fidelity decay.
This conclusion is further supported by the following re-
sults, where this coupling is partially averaged using a
heteronuclear-dipolar decoupling pulse sequence.

Next, the 3-bit phase code is employed to protect a
single qubit against errors from evolution under the natural
Hamiltonian of the carbon subsystem as well as residual

heteronuclear couplings between the carbons and protons
due to partial decoupling of the protons using the
SPINAL64 sequence [12] at an amplitude of 70 kHz.
From the syndrome information shown in Fig. 4, the major
contributions are from phase rotations on C1 and Cm. This
is to be expected, since, in this orientation and in this
rotating frame, the Zeeman shifts of these two spins are
the dominant terms in the internal Hamiltonian.
Two rounds.—We devise a way to experimentally deter-

mine the entanglement fidelity of multiple rounds of error
correction and use it to experimentally determine the en-
tanglement fidelity of two rounds of the 3-bit phase code.
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FIG. 2 (color online). Malonic acid (C3H4O4) molecule and Hamiltonian parameters (all values in kHz). Elements along the
diagonal represent chemical shifts, !i, with respect to the transmitter frequency (with the Hamiltonian

P
i�!iZi). Above the diagonal

are dipolar coupling constants [
P

i<j�Di;jð2ZiZj � XiXj � YiYjÞ], and below the diagonal are J coupling constants,

[
P

i<j
�
2 Ji;jðZiZj þ XiXj þ YiYjÞ]. An accurate natural Hamiltonian is necessary for high-fidelity control and is obtained from precise

spectral fitting of (also shown) a proton-decoupled 13C spectrum following polarization transfer from the abundant protons. The central
peak in each quintuplet is due to natural abundance 13C nuclei present in the crystal at�1% (for more details, see [7,10] and references
therein).
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FIG. 3 (color online). Experimentally determined entangle-
ment fidelities for unencoded (blue squares), before (green
diamonds), and after (red circles) the correction step of one
round of QEC. After encoding, a variable delay is implemented
before the recovery process. During the delay, the system
evolves under the heteronuclear and homonuclear terms in the
natural Hamiltonian. The nonmonotonicity in the unencoded and
decoded data is indicative of the presence of a coherent error.
The inset shows the intensities measured for the different syn-
dromes; the dominant error is a phase rotation on the bottom
qubit (Cm).
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After the first round of error correction, the surviving
polarization from the various input states is distributed
over the various subspaces of the Hilbert space correspond-
ing to the various syndromes. For the second round, for
each syndrome, we project into the subspace of the syn-
drome, perform error correction in that subspace, and then
sum over all possible syndromes. For each syndrome, this
projection is implemented as a transformation [denoted by
Us in Fig. 1(c)] that swaps the information in that subspace
with the subspace where the ancillæ are in
ðI þ ZÞðI þ ZÞ—or j00ih00j—and then projecting unto
the latter subspace using the same protocol for initial state
preparation. The quantum circuit describing the protocol is
shown in Fig. 1(c), and the experimental results are shown
in Fig. 4.

The results show that, for long interaction intervals,
there is an advantage to performing two rounds of error
correction with our current level of control. The initial drop
(at zero interaction interval) in the experimentally deter-
mined two-round entanglement fidelity is mainly due to the
projection operation, which is not needed if pure ancillæ
are available.

The scheme requires a number of experiments that
grows as sm�1, where s is the number of possible non-
degenerate syndromes of the code and m is the number of
rounds of correction performed. In this sense, the applica-
bility of the scheme is very limited, but it is sufficient for
our purposes.

Conclusion.—We were able to demonstrate the advan-
tage of performing quantum error correction to protect
against relevant, naturally occurring phase errors—coher-
ent, incoherent, and decoherent—that arise in a solid state
system. We have shown that this is possible by achieving
state-of-the-art control on a 3-qubit system. Moreover, we
have shown that with these control fidelities, multiple
rounds of QEC are possible. This is particularly significant

in a system where it has been previously shown that
entropy can be efficiently removed from the system of
interest to the environment [9,10].
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FIG. 4 (color online). Summary of experimental results for the partial decoupling map: the system evolves under the natural
Hamiltonian as well as 70 kHz decoupling fields that partially modulate the heteronuclear interactions (between the carbons and
protons). Shown (on left) are the single-qubit entanglement fidelities in the cases where no encoding is employed (blue dots); or one
round of the 3-bit code (red crosses); or two rounds of the 3-bit code (black asterisks), where the interaction interval is split to two
equal intervals. The dashed lines are quadratic fits to the data and are included to guide the eye. Also shown (on right) is the signal after
one round of error correction as distributed over the various error-syndrome subspaces. In this case, the dominant errors are phase flips
on the top and bottom qubits, which are encoded on C1 and Cm, respectively.
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