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Proton structure effects in hydrogenic bound states are analyzed using nonrelativistic QED effective

field theory. Implications for the Lamb shift in muonic hydrogen are discussed. Model-dependent

assumptions in previous analyses are isolated, and sensitivity to poorly constrained hadronic structure

in the two-photon exchange contribution is identified.
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Introduction.—Atomic spectroscopy can provide the
most precise determination of fundamental hadron proper-
ties, such as the proton radius [1–3]. The need for system-
atic analysis to translate between bound state energies and
hadronic observables is sharpened by a discrepancy be-
tween the recent muonic hydrogen Lamb shift measure-
ment [2] and existing theoretical calculations. Using a
model-independent extraction of the charge radius from
electron scattering data (r ¼ 0:871ð10Þ fm [4]; see also
[5,6]) or an extraction from electronic hydrogen spectros-
copy (r ¼ 0:8768ð69Þ fm [3]; see also [7]), the measured

2SðF¼1Þ
j¼1=2 � 2PðF¼2Þ

j¼3=2 interval in muonic hydrogen lies 0.258

(90) meVor 0.311(63) meVabove theory. The discrepancy
brings into question the treatment of proton structure ef-
fects in atomic bound states, and has generated specula-
tions on new forces acting in the muon-proton system [8],
inadequate treatment of proton charge density correlations
[9], and modifications of off-shell photon vertices [10].

Nonrelativistic QED (NRQED) [11] is a field theory
describing the interactions of photons and nonrelativistic
matter. The NRQED Lagrangian is constructed to yield
predictions valid to any fixed order in small parameters �
and jqj=M, where jqj denotes a typical bound state mo-
mentum, and M is a mass scale for the nonrelativistic
particle. NRQED provides a rigorous framework to study
the effects of proton structure, avoiding problems of double

counting in bound state energy computations [12], elimi-
nating difficulties of interpretation for the polarizability of
a strongly interacting particle [13], and providing trivial
derivations of universal properties, such as the low energy
theorems of Compton scattering [14].
We examine the NRQED framework for determining

proton structure corrections in atomic bound states. The
Lamb shift in muonic hydrogen is the first measurement
directly sensitive to the spin-independent, proton structure-
dependent, contact interaction appearing in NRQED (d2
below). The strength of this interaction is not determined
by measured on-shell form factors, or inelastic structure
functions of the proton. We identify model-dependent
assumptions in previous analyses and discuss whether
poorly constrained proton structure corrections can ac-
count for the above-mentioned discrepancy. We conclude
by outlining extensions of the theoretical analysis and
related applications.
NRQED.—Consider the formalism for electron-proton

bound states; the substitution e ! � applies for the muon-
proton system. The NRQED Lagrangian can be decom-
posed as LNRQED ¼ L� þLe þLp þLcontact. L�

contains the photon kinetic term and vacuum
polarization corrections; these corrections can be treated
separately and will not be considered here. Through
Oð1=m3

eÞ, [11,15,16]

Le ¼ c y
e
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(1)

Here c e is a two-component spinor representing the non-
relativistic electron field, � is the Pauli spin matrix,Dt and
D are covariant derivatives and E, B are the electric and
magnetic fields. Prefactors are chosen for convenience
so that for a pointlike fermion at tree level, cF ¼ cD ¼
cS ¼ cW1 ¼ cA1 ¼ 1 and cW2 ¼ cp0p ¼ cM ¼ cA2 ¼ 0.

A similar expression holds for Lp with e ! �Ze (Z ¼ 1
for the proton). Relevant contact interactions in the single
proton plus single electron sector are

L contact ¼ d1
c y

p�c p � c y
e�c e

memp

þ d2
c y

pc pc
y
e c e

memp

: (2)
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The coefficients ci, di depend on the choice of ultraviolet
regulator. Since no new bound state computations are
necessary, we will quote results for phenomenological
inputs and bound state energies that are independent of
this choice. We are interested in proton structure correc-
tions to energy levels through order m3

e�
5=m2

p, and there-
fore need cF;D;S in Lp through Oð�Þ, and d1;2 through
Oð�2Þ. Other operators in Lp will enter when we analyze
the lowQ2 expansion of the forward Compton amplitude to
constrain d2. Knowledge of the ci’s and di’s allows us to
determine corrections to energy levels. For example, co-
efficients cprotonD and d2 lead to first order energy shifts

�Eðn; ‘Þ ¼ �‘0

m3
rðZ�Þ3
�n3

�
Z��

2m2
p

cprotonD � 1

memp

d2

�
; (3)

where mr ¼ memp=ðme þmpÞ is the reduced mass.
Matching.—The NRQED Wilson coefficients are deter-

mined by enforcing matching conditions between full and
effective theories using convenient low energy observ-
ables. We concentrate on the matching conditions for the
proton.

One photon matching.—Wilson coefficients for opera-
tors coupling to a single photon are determined in terms
of the proton elastic form factors and their derivatives at
q2 ¼ 0 by using (1) to compute the amplitude for elastic
scattering of a proton via the electromagnetic current
[16–18]. The form factors satisfy F1ð0Þ ¼ 1, F2ð0Þ ¼ ap,

F0
1ð0Þ ¼

1

6
ðrpEÞ2 �

ap

4m2
p

þ Z2�

3�m2
p

log
mp

�
;

F0
2ð0Þ ¼

1

6
½ð1þ apÞðrpMÞ2 � ðrpEÞ2� þ

ap

4m2
p

;

(4)

where � is a photon mass [19]. These expressions serve to
define the phenomenological parameters ap � 1:793, rpE,

and rpM.
Two-photon matching.—The coefficients cA1, cA2 can be

determined by comparing to spin-averaged amplitudes for

forward and backward Compton scattering in the lab
frame [17]

4m3
p ��=� ¼ �cA1 � cA2=2þ 1þ 2cM þ cFcS � c2F;

4m3
p
��=� ¼ cA1 � 1; (5)

where �� ¼ 12:0ð6Þ � 10�4 fm3 and �� ¼ 1:9ð5Þ �
10�4 fm3 [20].
Contact interactions.—The coefficients in (2) can be

fixed using the zero-momentum limit for e�p ! e�p
scattering, cf. Fig. 1. The tree level, Oð�Þ, amplitude is
reproduced by the effective field theory, and the di’s
receive a nonzero contribution starting at Oð�2Þ. We
focus on the spin-independent case and neglect higher
order radiative corrections. The relevant proton matrix
element is the forward Compton amplitude (� ¼ 2k � q,
Q2 ¼ �q2)

1

2

X
s

i
Z

d4xeiq�xhk; sjTfJ�e:m:ðxÞJ�e:m:ð0Þgjk; si

¼ ð�g�� þ q�q�=q2ÞW1ð�;Q2Þ
þ ðk� � k � qq�=q2Þðk� � k � qq�=q2ÞW2ð�;Q2Þ:

(6)

Our normalizations are such that for a point particle,W1 ¼
2�2=ðQ4 � �2Þ and W2 ¼ 8Q2=ðQ4 � �2Þ. The matching
condition for the spin-averaged zero-momentum four-
point amplitude is
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Q3½ð1þ 2x2ÞW1ð2impQx;Q2Þ � ð1� x2Þm2
pW2ð2impQx;Q2Þ�

ðQ2 þ �2Þ2ðQ2 þ 4m2
ex

2Þ ; (7)

where �d2 denotes the contribution to d2 in addition to the
point-particle value.

The imaginary part of the Wi’s can be related to mea-
sured quantities. By inserting a complete set of states into
(6), the proton contribution to ImWi is expressed in terms
of proton form factors, and the continuum contribution to
ImWi is determined by inelastic structure functions. Using
dispersion relations,W2 can be fully reconstructed from its
imaginary part. Since W1 requires a subtraction for a

convergent dispersion relation, knowledge of W1ð0; Q2Þ
is also needed. Thus Wi can be written

W1ð�;Q2Þ ¼ W1ð0; Q2Þ þWp;1
1 ð�;Q2Þ þWc;1

1 ð�;Q2Þ;
W2ð�;Q2Þ ¼ Wp;0

2 ð�;Q2Þ þWc;0
2 ð�;Q2Þ; (8)

where the superscript numbers denote the number of sub-
tractions. The proton terms are

FIG. 1. Two-photon exchange amplitude for e�p ! e�p scat-
tering.
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Wp;1
1 ð�;Q2Þ ¼ 2�2ðF1 þ F2Þ2=ðQ4 � �2Þ;

Wp;0
2 ð�;Q2Þ ¼ 2Q2ð4F2

1 þQ2F2
2=m

2
pÞ=ðQ4 � �2Þ;

(9)

with Fi � Fið�Q2Þ. The continuum terms are

Wc;1
1 ð�;Q2Þ ¼ �2

�

Z 1

�cutðQ2Þ2
d�02 ImW1ð�0; Q2Þ

�02ð�02 � �2Þ ;

Wc;0
2 ð�;Q2Þ ¼ 1

�

Z 1

�cutðQ2Þ2
d�02 ImW2ð�0; Q2Þ

�02 � �2
;

(10)

where �cutðQ2Þ ¼ Q2 þ 2m�mp þm2
� is the threshold for

pion production, and ImWið�;Q2Þ are proportional to in-
elastic scattering cross sections.

The small and large Q2 limits of W1ð0; Q2Þ can be
studied in a model-independent way. Using NRQED to
compute the amplitude for double scattering of a proton
in an external static magnetic field we find [17]

W1ð0; Q2Þ ¼ 2apð2þ apÞ þQ2f2mp
��=�� ap=m

2
p

� ð2=3Þ½ð1þ apÞ2ðrpMÞ2 � ðrpEÞ2�g þOðQ4Þ:
(11)

At Q2 � GeV2 we may evaluate (6) using the operator
product expansion (OPE). Leading terms arise from
dimension-four operators and scale as Q�2 [17]. The in-
termediate Q2 region is not constrained by existing mea-
surements. This lack of knowledge about W1ð0; Q2Þ
introduces model dependence in the theoretical prediction
for the Lamb shift, which has so far been ignored in the
literature.

Given this model dependence, how did previous studies
obtain numerical predictions? The most common approach
is to pretend thatW1ð0; Q2Þ can be separated into ‘‘proton’’
and ‘‘nonproton’’ contributions. A ‘‘proton’’ part for
W1ð0; Q2Þ is obtained by inserting the vertex with on-shell
form factors into the Feynman diagrams for a relativistic
pointlike particle. For definiteness we refer to this ap-
proach as the ‘‘Sticking In Form Factors’’ (SIFF) model.
Explicitly,

WSIFF
1 ð0; Q2Þ ¼ 2F2ð2F1 þ F2Þ: (12)

We emphasize that (12) is not derived from a well-defined
local field theory. In fact, no local Lagrangian can give
such Feynman rules. Note also that WSIFF

1 ð0; Q2Þ does not
have the correct large Q2 behavior. A ‘‘nonproton’’ part is
obtained by multiplying the 2mpQ

2 ��=� term in (11) by a

function of Q2 [21,22]. The models used in [21,22] again
do not have the correct large Q2 behavior. Unlike ImW1,
we stress that the separation of W1ð0; Q2Þ into proton and
nonproton parts is not well defined.

Bound state energies.—The use of an effective field
theory allows us to systematically classify the proton
structure corrections to energy levels. Using (3), proton
vertex corrections, of order ðZ�Þ4 and ðZ2�ÞðZ�Þ4, are
determined by cD. Our definition (4) of the proton radius

in the presence of radiative corrections implies that the
Z2�ðZ�Þ4 correction is unchanged from the point-particle
result, so that [17]

�Evertexðn; ‘Þ ¼ 2m3
rðZ�Þ4ðrpEÞ2

3n3
�‘0 þm3

rZ
2�ðZ�Þ4
�n3

�
�
�‘0

�
4

3
ln

mp

mr�
2
þ 10

9

�
� 4

3
lnk0ðn; ‘Þ

�
:

(13)

Two-photon exchange corrections, of order ðZ�Þ5, are
determined by d2. Considering (8), it is natural to decom-
pose the correction as

�Etwo�� ¼ �Eproton þ �Econtinuum þ �EW1ð0;Q2Þ: (14)

It is convenient to subtract limQ2!0W1ð0; Q2Þ from

W1ð0; Q2Þ in (8), and add limQ2!0W1ð0; Q2Þ to

Wp;1
1 ð�;Q2Þ. Infrared singular terms in (7) are then con-

fined to the proton pole contribution. Having fixed this
terminology, we proceed to discuss each of the three terms
in �Etwo�� in turn. Our discussion so far applies to general
hydrogenic bound states. To investigate numerical results
we now specialize to muonic hydrogen (‘‘�H’’).
Proton pole contribution.—We content ourselves with a

simple dipole model for the elastic form factors,

GEðq2Þ � GMðq2Þ=GMð0Þ � ½1� q2=�2��2; (15)

where GE � F1 þ ðq2=4m2
pÞF2, GM � F1 þ F2 and�

2 ¼
0:71 GeV2. We return to a more sophisticated analysis of
this contribution, and analogous spin-dependent contribu-
tions, in forthcoming work [17]. After isolating the finite
term in (7), for muonic hydrogen

�E
proton
�H ðnSÞ � ð8=n3Þð0:016 meVÞ: (16)

We refrain from giving a detailed error estimation here; for
the purpose of explaining the muonic hydrogen anomaly,
an error smaller than 100% does not have very substantial
impact.
Continuum contribution.—A recent determination of the

continuum contribution is [21]

�Econtinuum
�H ðnSÞ � ð8=n3Þð�0:0127ð5Þ meVÞ; (17)

in line with previous results, �0:014ð2Þ meV [22],
�0:016ð3Þ meV [23].
W1ð0; Q2Þ contribution.—In the SIFF model (12) one

finds,

�EW1ð0;Q2Þ;SIFF
�H ðnSÞ ¼ ð8=n3Þð�0:034 meVÞ: (18)

The sum of the proton pole and W1ð0; Q2Þ contributions in
this model, 0:016 meV� 0:034 meV ¼ �0:018 meV, re-
produces previous results [24]. It is not hard to construct
model functions for W1ð0; Q2Þ that have the correct
small-Q2 and large-Q2 behavior, but give a much larger
contribution than the SIFF model.
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Comparison to previous results.—In order to make the
comparison to the literature clearer, we collect the results
of this analysis in Table I, which compares numerical
results for Oð�5Þ proton structure corrections in the
2P-2S Lamb shift of muonic hydrogen. We focus on the
two reference sources that were used in [2], namely

[22,25]. These works model �EW1ð0;Q2Þ
�H as a sum of proton

and nonproton contributions, adding the respective terms

to �Eproton
�H and �Econtinuum

�H . In order to simplify the com-

parison we present in the Table the total contribution to

�Etwo��
�H from [22,25]. In particular for [22] we add the

ðZ�Þ5 nuclear size correction (0.0232 meV) and the proton
polarizability correction (0.012 meV). For [25] we add the
ðZ�Þ5 nuclear size correction (0.0232 meV), the polariz-
ability correction (0.015 meV), and the recoil finite size
correction (0.013 meV). In [2] the nuclear size correction at
order ðZ�Þ5 from [22,25] employs the SIFF ansatz (12) for
W1ð0; Q2Þ; the ðrpEÞ3 scaling employed in [2] assumes the
large mp limit and a one-parameter model for GE and GM.

Let us note three differences between our results and the
theoretical predictions used in [2], and collected in Table I.
First, the �5 proton vertex correction from [22,24] uses a
different convention for the charge radius [26], while the
result from [27], adopted in [25], uses a model-dependent
SIFF prescription for the proton vertex correction; the
complete result with the charge radius definition (4) is
given by (13), displayed in the first line of the Table.
Second, the ‘‘recoil finite size’’ of [25], adopted from

[28], is in fact part of �Etwo��
�H . Including it as separate

contribution would lead to double counting. Third, the

�EW1ð0;Q2Þ
�H contribution is model dependent; the current

theoretical prediction is based on the SIFF ansatz. We
conclude that the dominant radiative correction to proton
structure is subject to uncertainties from unreliable had-
ronic models.

Discussion.—We have presented the NRQED formalism
for systematically analyzing proton structure effects in
hydrogenic bound states. The Lamb shift in muonic hydro-
gen is sensitive to a new structure-dependent contact in-
teraction (2). The strength of this interaction is not
determined by measured proton form factors or inelastic
structure functions. Taking all other contributions as fixed,

the muonic hydrogen Lamb shift determines d2 in (2).
NRQED then predicts a universal shift for other spin-
independent energy splittings in muonic hydrogen.
The strength of the contact interaction can be related to a

so-far poorly constrained piece of the forward Compton
amplitude of the proton, W1ð0; Q2Þ. In this Letter, we have
established some model-independent properties of
W1ð0; Q2Þ. First, the OðQ2Þ Taylor expansion (11) is de-
termined by NRQED in terms of measured quantities;
second, the asymptotic behavior is determined by OPE
techniques to be �Q�2. The intermediate region remains
poorly constrained [29]. The lack of theoretical control
over W1ð0; Q2Þ introduces theoretical uncertainties that
have not been taken into account in the literature. A
common approach is to use the SIFF model (12), but this
is not derived from first principles and gives the misleading
impression that the dominant Q2 dependence is con-
strained by on-shell form factors [21,22]. Such extrapola-
tions represent models forW1ð0; Q2Þ, typically without the
correct large Q2 behavior. While we do not attempt an
explicit modeling of W1ð0; Q2Þ, we believe that the uncer-
tainty assigned to this contribution (& 0:004 meV [2]) is
underestimated by at least an order of magnitude.
As further applications, the nonrelativistic effective the-

ory for vector fields can similarly be employed to describe
deuterium. The NRQED Lagrangian at order 1=M4 can be
used to systematically analyze �Etwo�� in the small-lepton
mass limit relevant to electronic hydrogen, and describes
spin polarizabilities of the proton [17].
We thank T. Becher, S. Brodsky, and C. Wagner for

discussions. Work supported by NSF Grant No. 0855039
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