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We report the first experimental realization of an approximate partial transpose for photonic two-qubit

systems. The proposed scheme is based on the local operation on single copies of quantum states and

classical communication, and therefore can be easily applied for other quantum information tasks within

current technologies. Direct detection of entanglement, i.e., without performing quantum state tomog-

raphy, using the partial transpose operation, is also demonstrated.
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Introduction.—Entanglement is generally a resource for
quantum information applications [1,2]. Given composite
quantum systems for such applications, it is then required
to determine if they are in entangled states rather than to
identify their quantum states, e.g., via quantum state
tomography. This naturally defines the so-called direct
detection of entanglement [3]. As first pointed out by
Peres [4], the entanglement of quantum states can be
detected by performing the partial transpose (PT) operation
on the composite quantum system; i.e., the quantum state
of one subsystem is left untouched while the quantum state
of the other subsystem is transposed. However, PT is a
nonphysical operation as it does not preserve physical
symmetries [5]. The impossibility of directly applying
the PT operation in experiments has lead to the develop-
ment of the alternative entanglement detection method
based on measuring local observables known as entangle-
ment witnesses [6].

Direct detection of entanglement using PT started to
attract interest when Horodecki and Ekert proposed a
method called structural physical approximation (SPA)
by which nonphysical operations such as PT can be sys-
tematically approximated by physical operations [7].
Moreover, it has been shown that SPAs to the nonphysical
operations (including PT) can be factorized into local
operations and classical communication (LOCC) [8].
Being based on applications of operations rather than ob-
servables, entanglement detection using SPAs works with
no dependence on a local basis of given quantum states.
Using the SPA to PT (SPA-PT), therefore, all entangled
states of two qubits as well as other useful entangled states
in high dimensions can be detected [9].

Therefore, for an operation-based approach to the direct
detection of entanglement [7], it is of utmost importance to
devise a practical SPA-PT scheme and demonstrate its
feasibility towards entanglement detection. We also em-
phasize from the fundamental point of view that, realizing
nonphysical operations (i.e., not allowed in quantum the-
ory) in their approximate and optimal forms would char-
acterize and confirm how far one can go in manipulating

quantum states for information tasks within the fundamen-
tal limit.
Experimental implementation of SPA-PT, on the other

hand, has not been successful to date as the original pro-
posal of Horodecki and Ekert requires quantum memory
and collective measurement, both of which are far from
mature technologies. Very recently however, it has been
shown that SPAs to optimal positive maps (including
SPA-PT [10]) can, in general, be replaced by quantum
channels of a local measurement followed by the prepara-
tion of quantum states [11]. This, in fact, significantly
improves the experimental feasibility of the direct
detection of entanglement using SPAs within present-day
technology.
So far, apart from the experimental feasibility per se,

little has been known about how to carry out the SPA-PT in
practice with minimal experimental resources. In this
Letter, we provide and demonstrate a practical scheme to
realize the SPA-PT for two-qubit states based solely on
local measurements and classical communication. The
experimental demonstration of the SPA-PT scheme is per-
formed in photonic systems, i.e., using single-photon po-
larization qubits and linear optical devices. The results
show that the SPA-PT scheme works equally well for all
Bell-states, indicating no dependence on local basis, a
crucial feature for direct detection of entanglement.
Direct detection of entanglement, i.e., without performing
quantum state tomography, using SPA-PT is also
demonstrated.
Scheme.—Let us begin by describing the theoretical

scheme to realize the SPA-PT. The central idea of the
SPA to a linear map � lies in the fact that by admixing
with the depolarization, D½�� ¼ Id=d where Id is the
identity matrix in a d dimension, the map � can be trans-

formed to a completely positive map ~�. The SPAmap ~� ¼
ð1� pÞ�þ pD with the minimum p ð0 � p � 1Þ repre-
sents a physical operation [12]. For linear maps 1 �� that
can detect entangled states, the SPA then works as
g1 �� ¼ ð1� pÞ1 ��þ pD �D with the minimum p

ð0 � p � 1Þ [7] and moreover can be factorized into a
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form of LOCC [8]. Having collected all these facts and
applied them to the case of the PT, one can derive the
following decomposition for the SPA-PT for a two-qubit
state �AB [13]:

ð g1 � TÞ½�AB� ¼ 1
3ð1 � ~TÞ½�AB� þ 2

3ð ~� �DÞ½�AB�; (1)

where ~T and ~� denote SPAs to the transpose and to the
inversion, respectively, where the inversion �½�� ¼ ��.

Let us now find those local operations that compose of
the SPA-PT. First, it is shown in Ref. [11] that the SPA
transpose ~T corresponds to a channel based on the mea-
surement and preparation of quantum states. It is also
shown that the operation can be constructed explicitly as
[14] ~T½�� ¼ P

4
k¼1 tr½Mk��jvkihvkj for a state �, where

jv1i / j0i þ iei�2=3

iþ e�i�2=3
j1i;

jv2i / j0i � iei�2=3

i� e�i�2=3
j1i;

jv3i / j0i þ iei�2=3

i� e�i�2=3
j1i;

jv4i / j0i � iei�2=3

iþ e�i�2=3
j1i;

and fMk ¼ jv�
kihv�

kj=2g4k¼1 is a complete measurement.

Next, a channel corresponding to ~� can be constructed

using its Choi-Jamiolkowski state � ~� ¼ ½1 � ~��ðj�þi�
h�þjÞ where j�þi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

. Then, ~�½�� ¼
2 trA½� ~�ð�T � 1Þ� [15]. One easily finds that � ~� is sepa-

rable, and moreover it holds that � ~�¼ð1��yÞ� ~Tð1��yÞ
with the Pauli matrix �y, where � ~T denotes the Choi-

Jamiolkowski state of the channel ~T. Consequently, the

channel ~� is the composition of ~T and �y:
~�½�� ¼

�y
~T½���y, i.e., for a qubit state �

~�½�� ¼ X4
k¼1

tr½Mk���yjvkihvkj�y: (2)

That is, the SPA inversion applies measurements that are
the same with those in the SPA Transpose while the Pauli
operation �y is applied in a state preparation.

Realization.—The SPA-PT in Eq. (1) can be imple-

mented by applying 1 � ~T and ~� �D with probabilities
1=3 and 2=3, respectively, see Fig. 1(a). The local opera-
tions are actually (single-copy) measurements followed by
state preparation, see Fig. 1(b) and 1(c). The measurement
Mk, i.e., on the basis jv�

ki ¼ Ukj0i, is performed by unitary

transformationUk and a measurement in the computational
basis. The preparation step can be done by transforming a
state collapsed by measurement, to a corresponding one
using optical elements [14]. For photonic polarization
qubits, j0i ¼ jHi and j1i ¼ jVi, wave plates and a polar-
izer are optical elements to perform unitary transforma-
tions and the measurement in the computational basis,
respectively. If a single photon is found after passing

through a set of wave plates for Uk and a polarizer aligned
for measurement in j0ih0j, it would mean that the qubit has
collapsed to the state j0i due to the measurement. The
collapsed state j0iwould then be used for state preparation
according to ~T or ~�, see Figs. 1(b) and 1(c). The depolar-
ization D can be performed by random applications of
Pauli matrices, D½�� ¼ 1=4

P
i¼0;x;y;z�i½���i, with each �i

implemented by wave plates.
The details for the experimental realization are the

following. A two-qubit state is prepared using the sponta-
neous parametric down-conversion process. A 6 mm thick
type-I �-BaB2O4 crystal is used in the frequency-
degenerate, noncollinear phase matching condition. The
�-BaB2O4 crystal was pumped by a 405 nm diode laser
beam (100 mW) and the spontaneous parametric down-
conversion photon pairs were centered at 810 nm. All four
two-qubit Bell states (i.e., two-photon polarization Bell
states) were then prepared with quantum interferometry
[16]. We observed the coincidence counting rate of ap-
proximately 900 Hz using interference filters with full
width at half-maximum bandwidth of 5 nm. To perform
the SPA-PT, each set of measurements and preparations is
switched every 5 sec, and the whole operation is also
repeated 3 times.
Let us now demonstrate the SPA-PT scheme for Bell

states j��i¼ðj00i�j11iÞ= ffiffiffi
2

p
, jc�i ¼ ðj01i � j10iÞ= ffiffiffi

2
p

.
These states are particularly chosen to show that the per-
formance depends largely on correlations existing in quan-
tum states but not their local basis. This is indeed an
important feature toward the efficient detection of entan-
glement. In experiments, the initially prepared Bell states
and the resulting states after the SPA-PT are identified
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FIG. 1 (color online). The SPA-PT g1 � T for the input state
�AB is accomplished by applying 1 � ~T and ~� �D with prob-
abilities 1=3 and 2=3, respectively, shown in (a). Combinations
of wave plates (WP) and polarizers (Pol.) implement measure-
ment and preparation of quantum states, shown in (b) and (c).
See text for details.
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using quantum state tomography (QST) [17]. The experi-
mental results are shown in Fig. 2.

To quantify the performance, we compute the Uhlmann’s

fidelity Fð�;�Þ ¼ ½tr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
�

ffiffiffiffi
�

pp �2 between two states, one

from the experimental realization ð g1 � TÞexp and the other

from the ideal one g1 � T [18]. For the states j��i, jc�i,
our experiment shows F ¼ 0:999, and for jcþi,
F ¼ 0:998. These results show that for the proposed

(a)

(b)

(c)

(d)

FIG. 2 (color online). The 1st column shows the QST of the four Bell states prepared in experiments �in: (a) j�þi, (b) j��i,
(c) jcþi, and (d) jc�i. The resulting states after applying the SPA-PT are identified by QST, which is shown in the 3rd column. Note
that only the real parts of the density matrices are shown as the imaginary parts are almost zero. These can be compared with the ideal
case of the PT, shown in the 2nd column.
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SPA-PT scheme only based on LOCC, the experimental
realization works faithfully without a dependence on local
basis.

Application.—So far, a scheme to realize the SPA-PT
based on a single-copy measurement and preparation of
quantum states is proposed and its experimental realization
is shown. An important application of the SPA-PT, for
which it was originally proposed, is the entanglement de-
tection of unknown quantum states [7]. Applying the PT to a
two-qubit state, a negative eigenvalue is a sufficient condi-
tion to conclude that the state is entangled. When applying
the SPA-PT, the condition would be an eigenvalue smaller
than the portion of admixed noise. It is an eigenvalue found
to be smaller than 2=9 for two-qubit states [7]. Thus, once
the SPA-PT is applied to unknown two-qubit states, to
determine if they are entangled requires us to estimate the
minimum eigenvalues of resulting quantum states [13].

It has been known that a general method to obtain the
minimum eigenvalue of unknown quantum states requires
a collective measurement within which one should be able
to store quantum states for a while [19]. Since the SPA-PT
is now performed by local measurements, the spectrum
estimation no longer requires a collective measurement on
resulting quantum states. This simplifies experimental re-
sources and thus hugely improves the practical feasibility
[11]. Estimating eigenvalues of resulting states after
SPA-PT then defines a classical optimization problem
over measurement outcomes.

Here, the goal is a proof-of-principle demonstration for
detecting entanglement (of unknown quantum states) from
measurement outcomes of the SPA-PTonly. To this end, we
consider a ‘‘brute-force’’ approach in the following,
in the sense that the cost, such as measurement settings,
is not optimized in terms of its efficiency at this stage. This
means that all measurement outcomes are collected from ~T,
~�, and D and applied to determine if given quantum states
are entangled or separable. For the identity
operation in 1 � ~T, any measurement in a tomographically
complete basis fjtiig4i¼1 is applied. In experiments,

measurements of 1 � ~T and, similarly, measurements

of ~� �D are repeated for the two-qubit state �AB.
The probabilities are then obtained from thesemeasurement
outcomes: pij ¼ tr½�ABjtiihtij �Mj�, qk ¼ tr½�ABMk �
j0ih0j�, and rk ¼ tr½�ABMk � j1ih1j�, where the states

fjtiig4i¼1 are chosen, for convenience, from fj0i; j1i; ðj0i þ
j1iÞ= ffiffiffi

2
p

; ðj0i þ ij1iÞ= ffiffiffi
2

p g. From these probabilities, it is
possible to reconstruct an operator after the SPA-PT in Eq.
(1) and determine the eigenvalues using a determinant.

The above brute-force method is applied to demonstrate
the entanglement detection of two-qubit states in the
following form: �ðp;�Þ ¼ ð1� pÞjc ihc j þ pjc?ihc?j
where jc i¼�j01i� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�j�j2p j10i. We generated nine
different quantum states �kðp;�Þ (for k ¼ 1; . . . ; 9) and
identified them using QST: ðp; �Þ ¼ ½ð0; 0:71Þ;
ð0:12; 0:71Þ; ð0:25; 0:71Þ; ð0:3; 0:71Þ; ð0:51; 0:71Þ; ð0; 0:92Þ;

ð0; 0:97Þ; ð0:37; 0:86Þ; ð0:42; 0:92Þ�. Note that these (p;�)
are obtained as the average of the data. In Fig. 3(a), these
states f�kg9k¼1 are shown in terms of the linear entropy SL
(as a measure of mixedness) and the tangle � as an entan-
glement measure [20].
For those quantum states f�kg9k¼1, we compare three

cases of entanglement detection: a theoretical prediction,
experimental results by realizing the SPA-PT, and the ‘‘-
brute-force’’ approach. Therefore, the minimum eigen-
value denoted by �min is obtained for each case as
follows: �Th

min refers to the one from the ideal (theoretical)

SPA-PT of the input state �k, �
Exp
min is computed from the

QSTof the resulting state after the SPA-PT in experiments,
and �D

min is from the above-mentioned ‘‘brute-force’’

method. In Fig. 3(b), all these are compared in terms of
the minimum eigenvalues and the tangle �. We have also
performed these for four Bell states and the results show
that all minimum eigenvalues are indeed smaller than 2=9;
see Table I. With these extensive examples, we have
verified experimentally that a method for entanglement
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FIG. 3 (color online). (a) Nine quantum states f�kg9k¼1 are
shown in the tangle (�)—linear entropy (SL) plane.
(b) Minimum eigenvalues of resulting states after SPA-PT are
shown. The error bars in (b) with respect to � can be found in (a).
Negative eigenvalues of two-qubit states after the PT is in the
range ½�1=2; 0�, which is ½1=6; 2=9� in the case of the SPA-PT.
The Werner state �W ¼ pI � I=4þ ð1� pÞjc�ihc�j and
the maximally entangled mixed states �MEMS¼fðpÞðj00ih00jþ
j11ih11jÞþpðj00ih11jþj11ih00jÞ=2þð1�2fðpÞÞj01ih01j where
fðpÞ is p=2 for p 	 2=3 and 1=3 for p < 2=3 [22].

PRL 107, 160401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 OCTOBER 2011

160401-4



detection using the SPA-PT does largely depend on corre-
lations existing in quantum states.

Conclusion.—We have proposed a practical scheme
to realize the partial transpose operation via structural
physical approximation and reported its experimental real-
ization for two-qubit states in photonic systems using linear
optics. We have also demonstrated entanglement detection
using SPA-PT. The experimental results show that, con-
trasted to entanglement witnesses, the SPA-PT works with
no dependence on local basis. Thus,with optimizations over
measurement outcomes, SPA-PT demonstrated in this work
would lead to direct, efficient, and practical methods of
detecting entanglement, which is essential for any quantum
information processing tasks. Furthermore, since our SPA-
PT scheme is based on local measurements and classical
communication, it can be applied to long-distance quantum
information tasks [21]. In various contexts of quantum
information processing, entanglement detection is gener-
ally and often a basic task required for quantum information
applications. Our work therefore has immediate and wide
ranging applications in quantum computation and quantum
communication.
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