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Relaxations and Rheology near Jamming
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We determine the form of the complex shear modulus G* in soft sphere packings near jamming.
Viscoelastic response at finite frequency is closely tied to a packing’s intrinsic relaxational modes, which
are distinct from the vibrational modes of undamped packings. We demonstrate and explain the
appearance of an anomalous excess of slowly relaxing modes near jamming, reflected in a diverging
relaxational density of states. From the density of states, we derive the dependence of G* on the frequency
and distance to the jamming transition, which is confirmed by numerics.
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When the bubbles or droplets that make up foams or
emulsions are packed closely together, they jam into a
mechanically rigid state [1-5]. Near jamming, they form
amorphous packings of repulsive athermal spheres [2], and
in recent years the linear quasistatic response of jammed
packings has been exhaustively mapped out. Proximity to
(un)jamming, a nonequilibrium critical point, organizes
their elasticity, and in simulations their moduli scale with
distance to the transition [3]. Experimental evidence for
these scalings, however, remains elusive. Rheology may
prove a better test bed for the jamming paradigm, as there
is already a wealth of available data [6-9]. While there is
growing numerical and theoretical evidence that jamming
also organizes the rheology of soft sphere packings, details
remain controversial [10-12].

Prior rheological studies of the jamming transition
have focused on steady flow [9—12]. Surprisingly, despite
its practical and fundamental significance, little is
known about the oscillatory rheology of soft spheres near
jamming. The complex shear modulus G*(w) = G'(w) +
1G"(w), composed of the storage modulus G’ and loss
modulus G”, describes the linear response to oscillatory
driving at frequency w. It is a fundamental material
characterization, encoding the response to shear on all
time scales, including the quasistatic (QS) shear modulus
G, in the zero frequency limit. Experiments provide
evidence as to the form of G*: Liquid and organic foams,
emulsions, and microgel suspensions are all shear thinning,
G* ~ (1w)® with A = 0.5, over one to several decades in
frequency [7,8].

Whereas undamped packings have vibrational normal
modes, modes in overdamped packings are relaxational. In
this Letter, we relate relaxational modes and rheology to
determine and explain the dependence of G* on frequency
and distance to jamming. G* displays dynamical critical
scaling; shear thinning is a critical effect, and the shear
thinning regime extends to zero frequency at the jamming
transition. We calculate all critical exponents, including
A = 1/2. This makes A one of the few experimentally
observed jamming exponents.
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The relationship between relaxations and rheology has a
simple schematic expression: A packing’s finite frequency
linear response can be mapped to a series circuit of Kelvin-
Voigt viscoelastic elements [Fig. 1(a)]. Each element has a
characteristic relaxation rate s equal to the eigenrate of one
of the packing’s relaxational modes [Fig. 1(b)]. Thus the
response to driving [Fig. 1(c)] is governed by the distribu-
tion of relaxation rates, i.e., the density of states D(s),
which is related to, but different from, the vibrational
density of states D({)). Here we will determine D(s) for
the first time, use scaling arguments to identify and explain
its characteristic features, and from these predict the form
of G*(w).

Model system.—Starting from numerically generated
static packings, we study their linear response: Inter-
actions are linearized about the reference state, and defor-
mations are calculated without allowing for rearrangements
of the contact network. Our jammed packings in d = 2
dimensions are comprised of weakly polydisperse disks in
a L X L unit cell generated by using the molecular dynam-
ics protocol of Ref. [13]. Packings are characterized by their

a

FIG. 1 (color online). (a) Kelvin-Voigt viscoelastic elements in
series. Elements are made of a spring with stiffness G, in
parallel with a dashpot with coefficient 7,; their characteristic
relaxation rate is s, = G,/m,. (b) Disk displacements of a
relaxational mode with rate s, = 0.006 in a packing with excess
coordination Az = 0.013; the disks are not shown. (c) Shear
response for the same packing driven at w = 0.006.
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mean number of contacts per particle, z. Static packings at
the jamming transition are isostatic: z = z,. = 2d; hence,
the excess contact number Az = z — z, serves as a measure
of distance to jamming [3,14].

We impose the dynamics of the ““full bubble model” of
Durian [10,15], in which foam bubbles are modeled as
disks. Contacting disks interact via elastic and repulsive
forces f¢' = k& that are linear in the overlap §, with a
spring constant k. Touching disks also experience a viscous
force £ = bA#, with damping coefficient b, opposing
their relative velocity evaluated at the contact, Av. The
dynamics are overdamped, so that forces and torques
balance on each bubble at every instant. We report stresses
in units of k and times in units of b/k.

To describe a shear deformation, which involves motion
of the disks and distortion of the unit cell, requires 3N + 1
degrees of freedom: the 3N displacements and rotations of
the disks, {u,;, u;, 6;}, plus the magnitude yL of the pure
shear displacement applied to the lattice vectors of the unit
cell. Equations of motion governing the disks’ motions and
the unit cell’s deformation are most easily written in a
Lagrangian formalism. To implement this, we note that
the elastic potential energy V is

V= %Z[k(Aul.lj)z - %(A@ 2], (1)
€ij) Y

where Aull and Aut label normal and tangential relative
displacements, respectively, possibly across periodic
boundaries. f° and Ar° are the force and separation, re-
spectively, between disks in the reference state. Similarly,
for the viscous forces described above, the Rayleigh
dissipation function R is [16]

R =3 b3 TAb? + ik = pid, = p,0)F) @)
)
The {p;} are disk radii. The disk rotations enter because
relative velocities are evaluated at the contact. The forms
of V and R will be needed below to extract the scaling of
the relaxational density of states.
The Lagrangian equations of motion are

Klq(s)) + sBlg(s)) = o(s)L|¥), 3)

where the matrices are K,, = d°V/dq,dq, and
B,,, = 9°R/94,,04,, |¥) is a unit vector along the strain
coordinate, and o is the shear stress. We have collected all
3N + 1 degrees of freedom in a vector |g(¢)) and applied a
Laplace transformation; transformed quantities depend on
the independent variable s, which has units of inverse time
and may be thought of as a relaxation rate.

Relaxational density of states.—Before considering
driving, we study the system’s relaxational modes and
rates. For ¢ =0, Eq. (3) is a generalized eigenvalue
equation; its eigenvalues and eigenvectors are the relaxa-
tional rates and modes; Fig. 1(b) gives an example. When
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FIG. 2 (color online). Relaxational density of states. As the
excess coordination number Az (legend) vanishes, D(s) develops
a power law divergence. The dashed curve ~1/s%%7. Inset:
The low s data are collapsed by rescaling s with the crossover
rate s* ~ Az'.9. Exponents are best fits (see the text).

deformed along the mode |s,), the system relaxes expo-
nentially to equilibrium with a rate given by the eigenvalue
s, = 0[17]. We use s to refer to |s| whenever no ambiguity
results.

Figure 2 displays the relaxational density of states D(s),
the distribution of rates, averaged over approximately
50 packings of N = 1024 disks for multiple values of
Az. Several features stand out. First, close to jamming
(Az—0), D(s) develops a power law divergence:
Packings at the transition possess many slowly relaxing
modes. Second, the divergence is cut off at a crossover rate
s* that vanishes with Az, so that, as packings are prepared
closer and closer to the transition, the weight of slow
modes grows. Finally, the fastest relaxations are on the
order of the bare rate k/b = 1.

Scaling of D(s).—To explain the characteristic features
of D(s), we generalize the ““cutting argument” of Wyart,
Nagel, and Witten (WNW) to overdamped dynamics. In
seminal work, WNW introduced this variational argument
to explain the low frequency plateau in the vibrational
density of states of undamped packings, D()) [18]. Here
we sketch relevant details.

The WNW argument involves constructing a set of trial
modes and estimating their frequencies, from which the
scaling of D({)) can be inferred. The trial modes are made
by first “cutting” contacts at the boundary of patches of
size {—this introduces floppy modes, zero frequency col-
lective modes that involve no relative normal motions
between disks—and then “stitching up” the cut with a
sinusoidal envelope with wave number g ~ 1/¢. Because
of the sinusoid, there are small relative normal motions in
the trial mode. Trial modes can be constructed for wave
numbers g = ¢* ~ Az, and their probability density is flat:
D(q) ~ ¢° for g = ¢".

To generalize these results to damped dynamics, there
are two key observations. First, we anticipate that, for
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sufficiently low frequencies, disk motions smoothly ap-
proach their quasistatic values. Thus, for long time scales
the trial modes are also good trial modes for the over-
damped dynamics. Second, D(s) can be related to D(g) by
inferring the “dispersion relation,” i.e., how s scales with
q.If s ~ ¢'/7, then D(s) ~ ¢°|dg/ds| ~ s*~".

To estimate the overdamped dispersion relation, we
assume that a trial mode |gwnw) is an approximate solution
to the homogeneous equation of motion K|gwaw) +
sB|gwxw) = 0. Taking an inner product and bearing in
mind Egs. (1) and (2) for V and R, at the transition (z = z,.)
one finds

g~ E (Aul\lwfo\V)2
b (Aul\lvaW)2 + (AM\JA_/NW)Z

“4)

where for scaling we refer to typical (relative) displace-
ments. Normal motions in a trial mode come from the

sinusoidal modulation: AMQVNW ~ Juwnw ~ qUwNw- In
contrast, tangential motions are predominantly contributed
by the floppy mode—they persist if ¢ is sent to zero—so to
leading order they are independent of ¢: AM%VNW ~ UwNW-
In the limit of small ¢, then, the dispersion relation is
quadratic: s ~ ¢g>. Hence, v = 1/2, and at jamming the
density of states diverges as

D(s) ~ s71/2, (5)

For 7z > z,., the dispersion relation remains quadratic for
s = 5" 1= (q")% or

s~ AZ2 (6)

so Eq. (5) continues to hold above s*. Equations (5) and (6)
are our first main result.

The predicted divergence and crossover scaling in D(s)
can be tested by plotting s*D(s) versus s/Az*, as shown
in the inset in Fig. 2. Equations (5) and (6) predict that
the crossovers at low s will collapse for A = 2 and that
above the crossover the curves will be flat for A = 1/2.
We find the best collapse and plateau for A = 1.9(1) and
A = 0.47(5), in good agreement with our predictions.

The vanishing rate s* implies a diverging time scale
= 1/s*" ~1/Az>. We stress that 7* is different from
the diverging time scale ~1/Az observed in undamped
packings [18]. These two time scales come from different
limiting cases of dynamics with both damping and inertia;
when inertial effects dominate damping, the dispersion
relation is linear rather than quadratic.

Shear response.—Near jamming, there is an abundance
of slow relaxational modes. These must influence the
response to shear [Fig. 1(c)]. We now show that the anoma-
lous modes are responsible for shear thinning at frequencies
o = s*, while for < s* the response is quasistatic.

For a sinusoidal strain with frequency w, the shear stress
is o(f) = G*(w)y(r). Numerical results for G* on approach
to jamming are plotted in the inset in Fig. 3 [19]. At high
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FIG. 3 (color online). Data collapse of the storage modulus G’
(open symbols) and loss modulus G” (filled symbols) plotted for
o = 0.07 and varying distance to jamming Az (legend). The
long (short) dashed curve indicates ©®3* () scaling. Exponents
are best fits (see the text). Inset: G* prior to rescaling.

frequency w = 1, loss dominates storage and both moduli
reflect their microscopic counterparts: G/ w ~ G’ ~ O(1).
This is because the packing cannot relax faster than the
bare rate k/b and there is no inertia; hence, high frequency
deformations are affine and viscous stress dominates.
Elasticity dominates for low frequencies, with the quasi-
static modulus G := lim,_,,G’ diminishing and the dy-
namic viscosity 7y := lim,_(G"/w growing on approach
to jamming. Between these two extremes is a range of
frequencies over which G’ and G" grow with sublinear
dependence on frequency, i.e., shear thinning; this range
grows as jamming is approached.

Scaling of G*(w).—By expanding |g(s)) in the relaxa-
tional modes and using the fact that the modes are
B-orthogonal, (s,,|Bl|s,) = 0 for m # n, Eq. (3) can be
inverted to give an exact expression for G*:

I 1 .
Gl0) ey Gl "

{ls,1>0}

with G} () = (Is,| + 10)(s,|Bls,)/|(s,|#)I>. Such a re-
ciprocal sum describes the modulus of a series circuit of
viscoelastic elements. Furthermore, the form of G} (w) is
identical to the shear modulus of a Kelvin-Voigt element
with rate constant |s,,|; each mode acts like a Kelvin-Voigt
element in the circuit [Fig. 1(a)]. We stress that Eq. (7) is
not a model postulated ad hoc but follows directly from
inverting the equations of motion. It makes clear that linear
rheology is controlled by the distribution of relaxation
rates, D(s).

The scaling of G* can be extracted from Eq. (7).
Treating each mode’s shear component (s, | ) as a random
variable independent of s,,, near jamming one finds
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Asymptotic analysis of the integral gives

Az w/Az, o =¥
G ~{ w? and G'~{w'/? s=w=]l
1 w, ]l = w.

€)

This is our second main result.

Equation (9) provides (i) an analytical prediction for the
scaling of the quasistatic shear modulus G, ~ Az, consis-
tent with numerical and analytical modeling in the QS limit
[3,20]. It predicts (i) a diverging viscosity n, ~ 1/Az,
which has not previously been predicted or measured. It
shows (iii) that G’ deviates qualitatively from the QS limit
for @ = s*. Thus the QS approximation is reasonable
only for time scales much longer than 7 ~ 1/Az?, which
diverges at jamming. Finally, (iv) Eq. (9) predicts that the
storage and loss moduli display a shear thinning regime
scaling as w®, with A = 1/2 being the same exponent that
governs the divergence of D(s). The regime extends to
frequencies as low as w ~ s* and, hence, to zero frequency
at the jamming transition. Such scaling is therefore a
critical effect, and the critical jammed state is a shear
thinning complex fluid.

Equation (9) also predicts that plotting the rescaled
complex modulus G*/Az* and rescaled frequency
w/Az* will produce data collapse for u = 1 and, again,
A = 2. Indeed, we find excellent collapse for u = 1.05(5)
and A = 1.95(5) (Fig. 3), in good agreement with the
predicted values. The loss modulus is linear for the low
rescaled frequency (short dashed curve), as predicted,
while for larger values both G’ and G” approach a power
law scaling G* ~ (1w)* (long dashed curve); the value
A = pu/A = 0.54(4) again agrees well with its predicted
value of 1/2. As Eq. (9) also captures the trivial high
frequency scaling, its predictions are fully confirmed.
While our numerics are restricted to two dimensions, the
predicted exponents are independent of d, as are all known
jamming exponents [3].

Outlook.—We have identified and explained the diver-
gence and vanishing crossover in the relaxational density
of states. We have also shown that slow relaxational modes
determine the form of the complex shear modulus near
jamming, including the quasistatic shear modulus G, and
dynamic viscosity 7, the critical shear thinning regime,
and the diverging relaxation time 7* governing their
Crossover.

The predicted QS scaling has yet to be observed experi-
mentally; low frequency rheology is complicated by aging
processes such as coarsening, which are not modeled here
[8]. By contrast, the anomalous shear thinning regime has
already been observed [7,8]. While prior work by Liu et al.

also predicts w!/? scaling [7], it invokes the fluctuation-
dissipation theorem and does not explain the connection to
other scaling regimes or to jamming. Molecular dynamics
simulations below jamming also find A = 0.5, consistent
with our prediction [12].

We have demonstrated that collective effects can give
rise to anomalous w!/2 scaling in a system where micro-
scopic viscous forces are linear. One might also look for
sources of nonlinearity in the microscopic interactions, but
we know of no such mechanism common to liquid and
organic foams, emulsions, and microgel suspensions, all of
which display the same shear thinning rheology [8]. We
therefore conclude that A = 1/2 is one of the few experi-
mentally observed jamming exponents [5].
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