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The ferroelectric polarization of triangular-lattice antiferromagnets induced by helical spin-spiral order is

not explained by any existing model of magnetic-order-driven ferroelectricity. We resolve this problem by

developing a general theory for the ferroelectric polarization induced by spin-spiral order and then by

evaluating the coefficients needed to specify the general theory on the basis of density functional

calculations. Our theory correctly describes the ferroelectricity of triangular-lattice antiferromagnets driven

by helical spin-spiral order and incorporates known models of magnetic-order-driven ferroelectricity as

special cases.

DOI: 10.1103/PhysRevLett.107.157202 PACS numbers: 75.85.+t, 71.20.�b

Multiferroics, displaying magnetic, polar, and elastic
order parameters simultaneously, present fascinating
fundamental physics [1,2] and potentially promising appli-
cations [3]. Spin-spiral multiferroics [1,4,5] constitute a
challenging and interesting class of ferroelectricity in
which the ferroelectric polarization P is induced by a
magnetic order that removes inversion symmetry. For mul-
tiferroics with cycloidal spin-spiral order (e.g., TbMnO3

[6–8] andMnWO4 [9,10]), the ferroelectricity is explained
by the inverse Dzyaloshinskii-Moriya interaction [11]
or, equivalently, by the spin current model of Katsura,
Nagaosa, and Balatsky (KNB) [12], leading to Pij / eij �
ðSi � SjÞ, where eij is a unit vector connecting the two

adjacent spins Si and Sj. This model predicts that P is

perpendicular to the direction of the magnetic modulation
q / eij (i.e., P?q). Triangular-lattice antiferromagnets

such as CuFeO2 and AgCrO2 also exhibit ferroelectricity
when they adopt a helical spin-spiral order [13–15], in
which the plane of the spin rotation is perpendicular to
q. CuFeO2 shows ferroelectric polarization when its
magnetic structure has a helical spin-spiral order with
q ¼ ðQ;Q; 0Þ, where Q � 1=3. The layered iodide MnI2
was also found to be a multiferroic with helical spin-spiral
order [16]. The experimental studies on CuFeO2 and
MnI2 show that the P in the helical spin-spiral state with
q ¼ ðQ;Q; 0Þ is parallel to q (i.e., Pjjq). This finding is not
explained either by the symmetric exchange striction
mechanism or by the KNB model. The charge transfer
between metal and a ligand induced by spin-orbit coupling
(SOC) was considered responsible for the ferroelectric
polarization in a triangular lattice with helical spin-spiral
order [17] with the predictionPij/ðeij �SiÞSi�ðeij �SjÞSj.

This polarization, known as the ‘‘bond polarization’’ [18],
lies in the plane spanned by Si and Sj, which is perpendicu-

lar to q, and hence contradicts the experimental observation

[14,16,19] that Pjjq when q ¼ ðQ;Q; 0Þ. In short, to
explain the ferroelectric polarization of triangular-lattice
antiferromagnets with helical spin-spiral order, it is neces-
sary to develop a general theory for the ferroelectric polar-
ization driven by spin-spiral order.
In this Letter, we resolve the aforementioned issue

first by developing a general theory for the ferroelectric
polarization induced by spin spiral on the basis of sym-
metry considerations and then by evaluating the coeffi-
cients needed to specify the general theory on the basis
of density functional calculations for MnI2 as a represen-
tative example. We demonstrate that our theory correctly
describes the ferroelectric polarization of MnI2, and the
existing models of magnetic-order-driven ferroelectricity
are special cases of our theory.
Let us first consider a spin dimer (i.e., a pair of adjacent

spin sites) with spatial inversion symmetry at the center.
Without loss of generality, the distance vector from spin 1
to spin 2 will be taken along the x axis. A noncollinear spin
arrangement of the dimer removes the inversion symmetry
and hence induces ferroelectric polarization P. In general,
P is a function of the directions of spin 1 and spin 2 (with
unit vectors S1 and S2, respectively), namely, P ¼
PðS1x; S1y; S1z; S2x; S2y; S2zÞ. In principle, therefore,

P can be expanded as a Taylor series of Si� (i ¼ 1; 2;
� ¼ x; y; z). The time-reversal symmetry requires that in-
verting both spin directions leave the electric polarization
unchanged. Thus, the odd terms of the Taylor expansion
should vanish. If the fourth and higher order terms are
neglected, P is written as

P ¼ P1ðS1Þ þ P2ðS2Þ þ P12ðS1;S2Þ; (1)

where the intrasite polarization PiðSiÞ (i ¼ 1; 2) and the
intersite polarization P12ðS1;S2Þ are given by
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PiðSiÞ ¼
X

��

P��
i Si�Si�;

P12ðS1;S2Þ ¼
X

��

P��
12 S1�S2�: (2)

Here the expansion coefficients P��
i and P��

12 are vectors.

The above expressions show that P��
i ¼ P��

i , PiðSiÞ¼
Pið�SiÞ, and P12ð�S1;S2Þ¼P12ðS1;�S2Þ¼�P12ðS1;S2Þ.
From these relationships, together with the use of spatial
inversion symmetry and time-reversal symmetry, one can

show that P��
1 ¼ �P��

2 and P��
12 ¼ �P��

12 [20]. The latter

relation shows that the diagonal coefficients P��
12 ¼ 0, so

the intersite polarization can be expressed as

P 12 ¼ Pyz
12ðS1 � S2Þx þ Pzx

12ðS1 � S2Þy þ Pxy
12ðS1 � S2Þz;

(3a)

where ðS1 � S2Þ� refers to the �ð¼ x; y; zÞ component
of the vector (S1 � S2). By using similar notations for

the x, y, and z components of the vectors P��
12 , Eq. (3a) is

rewritten as

P 12 ¼ MðS1 � S2Þ (3b)

with the 3� 3 matrix M:

M ¼
ðPyz

12Þx ðPzx
12Þx ðPxy

12Þx
ðPyz

12Þy ðPzx
12Þy ðPxy

12Þy
ðPyz

12Þz ðPzx
12Þz ðPxy

12Þz

2
664

3
775: (4)

Given that the distance vector from spin 1 to spin 2 is taken
along the x axis, the bond polarization model [18]
is a special case of the intrasite polarization in which the
only nonzero coefficients are Pxx

1 ¼ ðC; 0; 0Þ, Pxy
1 ¼

Pyx
1 ¼ ð0; C=2; 0Þ, and Pzx

1 ¼ Pxz
1 ¼ ð0; 0; C=2Þ, where C

is a constant. The KNB model is a special case of
the intersite polarization with ðPzx

12Þz ¼ �ðPxy
12Þy ¼ C as

the only nonzero elements ofM, whereC is a constant. The
intersite polarization given by Eq. (3b) may now be referred
to as the generalized KNB (gKNB) model. For a linear
three-atom M�L�M model (M ¼ transition metal,
L ¼ main-group ligand), the intrasite term reduces to the
bond polarization model and the intersite term to the KNB
model.

To specify the intrasite and intersite polarizations
described above, one needs to determine the expansion

coefficients P��
i (i ¼ 1; 2) and P��

12 . We evaluate these
coefficients for a spin dimer of MnI2 [Fig. 1(a)] as a
representative example, on the basis of density functional
calculations. We adopt the LDAþ Uþ SOC approach to
calculate electric polarizations [20]. MnI2 crystallizes in
the CdI2-type structure with MnI2 layers stacked along the
c axis [see the left inset in Fig. 1(a)]. In the Mn triangular
lattice, each Mn2þ ion has six nearest neighbor (NN)
Mn2þ ions. The structure of an isolated Mn2I10 cluster
(i.e., a spin dimer), namely, an isolated Mn-Mn pair plus

its 10 first-coordinate I atoms, is shown in the upper-right
inset in Fig. 1(a). Each NN Mn-Mn pair contributes to the
total electric polarization. To characterize the ferroelectric
polarization arising from one pair of NN Mn2þ ions in
MnI2, we isolate a Mn-Mn pair in a 5� 5� 1 supercell of
MnI2 and replace all other Mn2þ ions with nonmagnetic
Mg2þ ions, as depicted in Fig. 1(a). (A more accurate
method for calculating the coefficients of the intersite
term requires no substitution of Mn2þ ions with nonmag-
netic ions such asMg2þ ions [20] and will be referred to as
the no-substitution method.) When the SOC effect is
excluded in the density functional calculations, the electric
polarizations become zero so that the SOC effect is essen-
tial for the occurrence of ferroelectricity in helical spin-
spiral systems.

The expansion coefficients P��
i (i ¼ 1; 2) and P��

12 for a

given spin dimer can be readily determined by mapping
analysis once its polarizations are calculated for a set
of carefully chosen noncollinear spin arrangements. To
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FIG. 1 (color online). (a) The 5� 5� 1 supercell of MnI2 in
which all Mn2þ ions except for an isolated NN Mn-Mn pair are
replaced by nonmagneticMg2þ ions. The left inset illustrates the
layered structure of MnI2. The upper-right inset shows the top
view of theMn2I10 dimer cluster. The lower-right inset shows the
local coordinate systems ðx; y; zÞ and ðX; Y; ZÞ employed for
calculations. (b) The electric polarizations predicted by the
KNB and gKNB models for three different spin configurations
of the Mn-Mn dimer, where the directions of the spins and the
polarizations are described in terms of the ðx; y; zÞ coordinate
system shown in Fig. 1(a). The blue dots representing S2 mean
that it is pointed along the positive z axis, and so does the green
dot representing the polarization in the KNB model. The
Cartesian components of the polarizations obtained from the
gKNB model are given in units of 10�5 e �A. (c) The polarization
of the Mn-Mn pair with spins in the xy plane as a function of the
angle � between the spins S1 and S2. The data points were
obtained from direct density functional calculations and the solid
curves from the model of Eq. (1).
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evaluate an off-diagonal coefficient of the intrasite polar-
ization, for example, Pxy

1 , we calculate the electric polar-

izations for the four spin arrangements I0–IV0 of the spin
dimer specified in Table I. Then, according to Eq. (2), Pxy

1

is related to the polarization of the spin arrangements
I0–IV0 as Pxy

1 ¼ ðPI0 þ PII0 � PIII0 � PIV0 Þ=4. Other off-

diagonal intrasite coefficients, Pxz
1 and Pyz

1 , can be eval-

uated in a similar manner [20]. The diagonal coefficients of
the intrasite polarization can be determined by calculating
the electric polarizations for the six spin arrangements
I–VI of the spin dimer specified in Table II. According to
Eq. (2), the polarizations of these spin arrangements have
the relationships PI þ PII ¼ 2ðPxx

1 � Pyy
1 Þ, PIII þ PIV ¼

2ðPxx
1 � Pzz

1 Þ, and PV þ PVI ¼ 2ðPyy
1 � Pzz

1 Þ. Two of these

three equations are linearly independent, but only the two
independent parameters (Pxx

1 � Pyy
1 ) and (Pxx

1 � Pzz
1 ) are

needed in calculating the sum of the diagonal contributions
of the two intrasite polarizations because of the relation-

ship P��
1 ¼ �P��

2 [20]. The electric polarizations of the

above six spin arrangements can also be used to extract
the coefficients of the intersite polarization P12, that is,
Pxy
12 ¼ ðPI � PIIÞ=2, Pxz

12 ¼ ðPIII � PIVÞ=2, and Pyz
12 ¼

ðPV � PVIÞ=2 [20].
Our calculations for the spin dimer ofMnI2 and mapping

analyses as outlined above show that the coefficients of the
intrasite polarization are Pxx

1 ¼ ð0; 0; 0Þ, Pyy
1 ¼ ð2:5; 0; 0Þ,

Pzz
1 ¼ ð�2:5; 0; 0Þ, Pxy

1 ¼ ð5:0; 7:5; 0Þ, Pxz
1 ¼ ð0;�5:0; 0Þ,

and Pyz
1 ¼ ð7:5;�2:5; 0Þ in units of 10�6 e �A. Note that the

expression of the intrasite polarization differs from that of
the bond polarization model (see above). The coefficients

of the intersite polarization extracted by using the no-
substitution method [20] are

M ¼
M11 0 0

0 M22 M23

0 M32 M33

2
664

3
775; (5)

where, in units of 10�5 e �A, M11 ¼ �4:8, M22 ¼ 39:5,
M23 ¼ 49:0, M32 ¼ �44:5, and M33 ¼ �26:0. Thus, the
intersite polarization is at least an order of magnitude
stronger than the intrasite polarization and differs from
the KNB model (see above) because the matrix elements
M11 ¼ ðPyz

12Þx, M22 ¼ ðPzx
12Þy, and M33¼ðPxy

12Þz are not

zero and because M23¼ðPxy
12Þy is different from �M32¼

�ðPzx
12Þz. Figure 1(b) illustrates the differences between the

KNB and gKNB models in predicting the polarization P
for three different spin arrangements of the Mn-Mn dimer.

Given the expansion coefficients P��
12 extracted as de-

scribed above, one can predict the P of the Mn-Mn dimer
with various spin arrangements by using Eq. (1). To show
that the gKNB model can indeed predict the P of the
Mn-Mn pair with arbitrary spin orientations, we compute
P for several spin arrangements of the Mn-Mn dimer
directly from density functional calculations. For conve-
nience, we keep the first Mn spin along the x direction and
rotate the second Mn spin in the xy plane in these spin
arrangements. Then, the P is found to lie in the yz plane.
Importantly, the polarization predicted by the gKNBmodel
is in excellent agreement with the value calculated directly
from density functional calculations for the spin dimer
[see Fig. 1(c)]. This validates our analysis of the electric
polarization without considering the fourth and higher
order terms.
With the electric polarizations calculated for various NN

Mn-Mn pairs, we now estimate the electric polarization of
MnI2 with helical spin-spiral order in terms of only the
intersite term, because the sum of all intrasite terms for any
helical spin-spiral arrangement is zero. Since each Mn spin
site i has six NN Mn spins kð¼ 1–6Þ, the total polarization
Ptot
i at the site i is written as Ptot

i ¼ P
6
k¼1 Pik. In the case of

spin spiral, Ptot
i is the same for all i sites, so we consider

only the polarization associated with site 0 shown in
Fig. 2(a), for which Ptot

i ¼P
6
k¼1P0k¼P

6
k¼1M

0kðS0�SkÞ,
where M0k refers to the matrix for the intersite polari-
zation for pair 0 and k. In the local ðx; y; zÞ coordinate
system defined in Fig. 1(a), our calculations show that

for q¼ðQ;0;0Þ, Ptot
0 ¼ ð ffiffiffi

3
p

=2A;� 3
2 A; 0Þ with A¼

ðM11�M22Þ sin2�Q. In the case of q ¼ ðQ;Q; 0Þ, Ptot
0 ¼

ð12 B;
ffiffiffi
3

p
=2B; 0Þ with B ¼ ðM11 þ 3M22 � 4M11 cos2�QÞ

sin2�Q. Thus, the gKNB model predicts that P?q when
q ¼ ðQ; 0; 0Þ, but Pjjq in the case of q ¼ ðQ;Q; 0Þ, as
found experimentally [16], and that the polarization re-
verses with the change in the spin chirality (q to �q), in
accord with experiment. The gKNB model shows that the
polarization in both cases depends only on two elements of

TABLE I. The four spin arrangements I0–IV0 of the spin dimer
employed to calculate its off-diagonal intrasite electric polariza-
tion Pxy

1 by LDAþ Uþ SOC calculations.

S1 S2

I0 ð ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2; 0Þ ð1; 0; 0Þ

II0 ð ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2; 0Þ ð�1; 0; 0Þ

III0 ð ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2; 0Þ ð1; 0; 0Þ

IV0 ð ffiffiffi
2

p
=2;

ffiffiffi
2

p
=2; 0Þ ð�1; 0; 0Þ

TABLE II. The six spin arrangements I–VI of the spin dimer
employed to calculate its diagonal intrasite electric polarization
P��
1 (� ¼ x; y; z) as well as the intersite polarization Pxy

12, P
xz
12,

and Pyz
12 by LDAþ Uþ SOC calculations.

S1 S2

I ð1; 0; 0Þ ð0; 1; 0Þ
II ð1; 0; 0Þ ð0;�1; 0Þ
III ð1; 0; 0Þ ð0; 0; 1Þ
IV ð1; 0; 0Þ ð0; 0;�1Þ
V ð0; 1; 0Þ ð0; 0; 1Þ
VI ð0; 1; 0Þ ð0; 0;�1Þ

PRL 107, 157202 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

157202-3



the matrix M, i.e., M11 and M22, both of which are zero in
the KNB model. In Fig. 2(b), we plot the magnitude of the
polarization as a function of Q for the cases of q ¼
ðQ; 0; 0Þ and q ¼ ðQ;Q; 0Þ. The plot is symmetric with
maximum at Q ¼ 0:25 in the case of q ¼ ðQ; 0; 0Þ but is
slightly asymmetric with maximum at Q ¼ 0:225 in the
case of q ¼ ðQ;Q; 0Þ.

We determine the total ferroelectric polarization ofMnI2
in the helical spin-spiral state with q ¼ ð0:181; 0; 0:439Þ,
observed in the absence of an applied magnetic field,
directly from density functional calculations by approxi-
mating the incommensurate state with the commensurate
helical spin-spiral state with q ¼ ð1=3; 0; 0Þ by using a 3�
1� 1 supercell. Our calculations show that the electric
polarization of this state is 58:8 �C=m2 along the [100]
direction, as shown in Fig. 2(a). Thus, our density func-
tional calculations show that P?q, in agreement with
experiment [16]. For the helical spin-spiral state of MnI2
with q ¼ ðQ;Q; 0Þ, found under an in-plane magnetic field

greater than 3 T [16], we use a
ffiffiffi
3

p � ffiffiffi
3

p � 1 supercell to
simulate the q ¼ ð1=3; 1=3; 0Þ state. The total polarization
of this state is calculated to be 71:4 �C=m2 along the [110]
direction. In this case, Pjjq, again in agreement with ex-
periment [16]. As can be seen from Figs. 2(c) and 2(d), the
gKNB model not only predicts the correct direction of the
polarization but also gives a rather accurate magnitude of
the polarization for the cases of q ¼ ðQ; 0; 0Þ and q ¼
ðQ;Q; 0Þ. Our theory of ferroelectric polarization is general
and is expected to provide accurate predictions when ap-
plied to other multiferroics driven by spin-spiral magnetic
order.

In the local coordinate system ðX; Y; ZÞ chosen to mini-
mize the magnitudes of the diagonal elements of the matrix
M [see the lower-right inset in Fig. 1(a); the Y axis is close
to the distance vector between the two I atoms forming the
shared octahedral edge between the adjacent Mn atoms],
the matrixM of Eq. (5) determined from density functional
calculations is rewritten as

M ¼
�4:8 0 0

0 6:8 79:6

0 �13:9 6:8

2
664

3
775 (6)

in units of 10�5 e �A. In the local ðX; Y; ZÞ coordinate

system, ðPXY
12 ÞY ¼ 79:6� 10�5 e �A is much greater than

�ðPZX
12 ÞZ ¼ 13:9� 10�5 e �A. The cause for this anisotropy

was examined by performing tight-binding calculations for
a planar M2L2 cluster consisting of two transition metal
atomsM bridged by two ligand atoms L [20] on the basis of
the model Hamiltonian similar to that employed by Jia
et al. [18]. This analysis shows [20] that the large differ-
ence between ðPXY

12 ÞY and �ðPZX
12 ÞZ arises from the struc-

tural anisotropy of the planar M2L2 cluster; the Y axis is
nearly in the plane of, but the Z axis is nearly perpendicular
to, the plane of the cluster.

In summary, on the basis of symmetry arguments, we
developed a general theory of ferroelectric polarization
that can correctly describe all known ferroelectric polar-
ization induced by spin-spiral order.
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