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We develop a technique to directly study spinons (emergent spin S ¼ 1=2 particles) in quantum spin

models in any number of dimensions. The size of a spinon wave packet and of a bound pair (a triplon) are

defined in terms of wave-function overlaps that can be evaluated by quantum Monte Carlo simulations.

We show that the same information is contained in the spin-spin correlation function as well. We illustrate

the method in one dimension. We confirm that spinons are well-defined particles (have exponentially

localized wave packet) in a valence-bond-solid state, are marginally defined (with power-law shaped wave

packet) in the standard Heisenberg critical state, and are not well defined in an ordered Néel state

(achieved in one dimension using long-range interactions).
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Spinons are emergent spin S ¼ 1=2 particles (fractional
excitations) of quantum magnets [1–3] and potentially
exist also in strongly correlated electron systems such as
the high-Tc cuprate superconductors [4]. Their existence is
well established in one-dimensional systems [1,2], where
they correspond to kinks and antikinks (solitons). In higher
dimensions, gapped magnons (‘‘triplons’’) can be viewed
as bound states of spinons. Under some conditions, in spin
liquid states [3] and at certain quantum-critical points [5],
these spinons may become deconfined (unbound). Even in
cases where the spinons are not completely deconfined,
such as in a valence-bond-solid (VBS) state of a two-
dimensional system close to a phase transition into the
antiferromagnetic (Néel) state, the bound state can become
very large [5]. The spinons can then be viewed as decon-
fined below the length scale of the pair size and above a
corresponding (relatively low) energy scale. This is analo-
gous to quarks, which are the elementary constituent par-
ticles of the baryons although they are, strictly speaking,
always confined.

Observing deconfined or almost deconfined spinons in
experiments is in general difficult [6]. In 1D systems, e.g.,
the Heisenberg chain, it is well understood (based on the
exact Bethe ansatz solution and numerical calculations
[2,7]) that spinons lead to a broad continuum in the dy-
namic spin structure factor Sðq;!Þ. This continuum has
been observed in neutron scattering experiments on quasi-
1D quantum antiferromagnets [8]. In 2D systems, there is
no known reference model with deconfined spinons in
which Sðq;!Þ can be computed exactly. One nevertheless
expects a broad continuum also in this case, and such
experimental signatures have been claimed in some
quasi-2D systems [9]. The issue is complicated, however,
by the fact that a continuum is also expected due to multi-
magnon processes [10].

In this Letter, we discuss spinon detection in numerical
model calculations. This has also been a challenging prob-
lem, the solution of which will greatly help to understand

the conditions under which spinons can exist as indepen-
dent elementary particles. Recently, signatures in thermo-
dynamic properties were observed [11] in a 2D J-Q model
(a spin-1=2 Heisenberg model including four-spin interac-
tions [12]) at the point separating its Néel and VBS ground
states. This model may, thus, exhibit the deconfined
quantum-criticality proposed by Senthil et al. [5]. It is still
desirable to have a more direct way to unambiguously
(independently of any phenomenological ansatz or theory)
detect spinons in numerical studies of spin models (and
eventually in doped systems). Here we introduce a method
based on quantum Monte Carlo (QMC) simulations in the
basis of valence bonds (singlet pairs) [13], generalized to
include one or two unpaired spins [14,15]. We show that an
unpaired spin can constitute the core of a spinon wave
packet, the size of which can be computed with our
method. Analyzing the separation of two such wave pack-
ets we obtain quantitative information on the confinement
or deconfinement of spinons in a magnetically disordered
state. Importantly, our definitions also reproduce the ex-
pectation that the spinon should not be a low-energy par-
ticle in the ordered Néel state.
Models.—The primary model we use to test our method

is the J-Q3 chain, a 1D member of the broad class of J-Q
models introduced in Refs. [12,16]. Defining a two-spin
singlet projector Ci;j ¼ 1=4� Si � Sj, the Hamiltonian is

H ¼ �XN

i¼1

ðJCi;iþ1 þQ3Ci;iþ1Ciþ2;iþ3Ciþ4;iþ5Þ; (1)

where J;Q3 � 0 and we define g ¼ Q3=J. The ground
state of this system is in the class of the standard critical
Heisenberg chain for g < gc and is a doubly degenerate
VBS for g > gc. Using Lanczos diagonalization to extract
the lowest singlet and triplet excitations and studying their
crossings in the standard way for this kind of transition
(see, e.g., [17]), we obtain gc � 0:1645 (in agreement with
a recent QMC study of the critical properties of the same
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model [18]). We have also studied the J-Q2 model, i.e.,
using two singlet projectors in the Q term in (1), for which
gc � 0:848 31. We focus here on the J-Q3 model because
it is more strongly VBS ordered at J ¼ 0.

We also wish to study an ordered Néel state, which in an
SU(2) invariant 1D system can only be achieved with long-
range interactions. The Hamiltonian

H ¼ XN

i¼1

XN=2

r¼1

ð�1Þr�1JrSi � Siþr; Jr > 0 (2)

was studied in [19]. With Jr ¼ 1=r�, a quantum phase
transition from the critical state for �> �c to a Néel state
for �< �c was observed, with �c � 2:2. Here we use
a slightly different model, with Jr ¼ 1=r� for odd r but
Jr ¼ 0 for even r, to make the system amenable to QMC
simulations in the valence-bond basis [13]. We choose
� ¼ 3=2, for which the system is Néel ordered.

To demonstrate the ground states of interest—VBS,
critical, and Néel—in Fig. 1 we plot the spin and dimer
correlation functions, defined by

CðrÞ ¼ hSi � Siþri; (3)

DðrÞ ¼ hðSi � Siþ1ÞðSiþr � Siþ1þrÞi; (4)

and computed using the QMC method discussed below.
We multiply CðrÞ by ð�1Þr to cancel the signs of the

correlations and graph ð�1Þr½DðrÞ �Dðrþ 1Þ�, which
for large r can be regarded as the VBS order parameter.
QMC method.—The valence-bond QMC algorithm and

its generalizations to S > 0 states have been discussed in
several papers [13–15,20]. Here we review key aspects of
the basis and the form of the generated ground states.
Acting with a high power of the Hamiltonian Hm on a

trial state j�ti, with H written as a sum of singlet projec-
tors (individual ones and products of three, for J and Q
interactions, respectively), the ground-state normalization
h�0j�0i is sampled (for m large enough for Hmj�ti to be
completely dominated by j�0i). In an S ¼ 0 state for even
N, the states are expressed as superpositions of bipartite
valence-bond states jV�i, i.e., products of N=2 singlets

ða; bÞ ¼ ð"a#b � #b"aÞ=
ffiffiffi
2

p
, where a and b are sites on sub-

lattice A and B, respectively. We use trial states of the
amplitude-product form [21].
The valence-bond basis is nonorthogonal, and the nor-

malization of the projected ground state is therefore of the
form h�0j�0i ¼ P

��f�f�hV�jV�i, where f�; f� are not

known explicitly. Implicitly, the probability of generating a
pair of states is PðV�; V�Þ ¼ f�f�hV�jV�i. The overlap

hV�jV�i ¼ 2N0�N=2, whereN0 is the number of loops in the

transition graph of the two states. Figure 2(a) shows a case
with N0 ¼ 1. Matrix elements of the form hV�jAjV�i for
many observables A of interest depend on the loop struc-
ture of the transition graph [21,22].
For S > 0 and magnetizationmz ¼ S the states have 2mz

unpaired " spins and ðN � 2mzÞ=2 singlet bonds (as dis-
cussed, e.g., in [14,15]). For odd N, which we use for S ¼
1=2, the system is in principle frustrated by periodic
boundaries. This is a finite-size effect, however, which
vanishes when N ! 1 (at least for observables probing
distances r � N). The QMC loop updates [20] automati-
cally exclude frustrated negative-sign configurations,
and this should, thus, be the most rapid way to approach
N ¼ 1. Configurations for S ¼ 1=2 and S ¼ 1 states are
illustrated in Figs. 2(b) and 2(c). We note that the valence-
bond basis with two unpaired spins was used in a pioneer-
ing variational study on spinon deconfinement in a VBS
state of a 1D frustrated model [1].
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FIG. 1 (color online). Spin (a) and dimer (b) correlations of
systems with N ¼ 1024 spins. Results for the J-Q3 model in the
VBS phase (J ¼ 0, g ¼ 4; 1) and at criticality (gc) are shown
along with the behavior in the Néel state of the long-range model
with � ¼ 3=2. The curves in (a) are fits to the form / e�r=�

(with � � 4 at J ¼ 0). The straight lines at the gc data show the
expected �1=r critical behavior [27].

FIG. 2 (color online). Illustration of the basis for states with
(a) S ¼ 0 (even N), (b) S ¼ 1=2 (odd N), and (c) S ¼ 1 (even
N). The bonds and unpaired spins of the bra and ket states are
shown below and above the line of sites, respectively.

PRL 107, 157201 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

157201-2



Spinon statistics.—The first aspect of our method relies
on the representation of S ¼ 1=2 states in terms of valence-
bond states with an unpaired spin [15]. One can determine
whether there is a well-defined wave packet (localizable
particle) carrying the spin. The second aspect is to charac-
terize the correlations of two spinons in an S ¼ 1 state, to
determine whether they are confined, and, if so, to extract
the size of the bound state.

The S ¼ 1=2 ground state (with momentum k ¼ 0) can
be written as j�1=2i ¼

P
rjc 1=2ðrÞi, where r is the location

of the unpaired spin [15]. Denoting a basis state with the
spinon at r as jV�ðrÞi, we have jc 1=2ðrÞi ¼

P
�f

�
r jV�ðrÞi,

and the overlap of two states with different location of their
spinon cores is

hc 1=2ðr0Þjc 1=2ðrÞi ¼
X

��

f�r0f
�
r hV�ðr0ÞjV�ðrÞi: (5)

What we propose is that this quantity allows for a generic
way to test whether a spinon is a well-defined particle.
Such a particle should have a finite wave packet (i.e., a
minimum size of a region to which the S ¼ 1=2 degree of
freedom can be confined), which typically should lead to
an exponential decay of the overlap with the separation
jr0 � rj (with a power-law decay corresponding to a mar-
ginal case). This follows in a VBS state because the basis-
state overlap hV�ðr0ÞjV�ðrÞi is dictated by the number of

loops in the transition graph. An S ¼ 1=2 transition graph
has a string of bonds terminating in unpaired spins [15], as
seen in Fig. 2(b). In a VBS state, the loops are typically
short, and the presence of a string will reduce the number
of loops in proportion to the length of the string, and, thus,
hV�ðr0ÞjV�ðrÞi and (5) should decay exponentially with the
separation jr0 � rj. One can then also expect a power-law
decay in a critical VBS state.

The overlap (5) can be computed by accumulating the
distribution PðrÞ of separations r of the unpaired spins in
the S ¼ 1=2 transition graphs. The above expected behav-
iors are indeed realized in the J-Q3 model, as shown in
Fig. 3. In VBS states for large N, the overlap vanishes for
odd distances, implying that the bra and ket spinons are on
the same sublattice in the infinite system. For the even

distances the overlap is of the form PðrÞ / e�r=�, and � is
essentially the size of an exponentially decaying wave
packet. The size � is roughly twice the spin correlation
length in the cases we have studied.

In the critical state, the overlap has the form PðrÞ �
1=

ffiffiffi
r

p
and the wave packet is only marginally defined. The

Heisenberg chain is known to have spinon excitations [2]
and, thus, it appears that one can still consider such a broad
algebraic wave packet as a particle. The total weight of all
odd-r overlaps is roughly constant, � 1=4.

In the Néel state PðrÞ is almost flat and even and odd r
have almost the sameweight. The unpaired spin in the Néel
state is, thus, not localizable within a wave packet, in
agreement with the expectation that the spinon should

not be an elementary excitation of this state. The unpaired
spin is strongly aligned with the Néel order of the rest of
the system [23] and cannot be regarded as an independent
spatial S ¼ 1=2 degree of freedom.
For an S ¼ 1 state with two unpaired spins, we have

hc 1ðr0A; r0BÞjc 1ðrA; rBÞi
¼ X

��

f�
r0
A
r0B
f�rArBhV�ðr0A; r0BÞjV�ðrA; rBÞi; (6)

where, as indicated, in both the bra and the ket state one
spinon is on sublattice A and one on B. Here we can define
several probability distributions depending on a single
distance, e.g., jrA � rBj or jrA � r0Bj, integrating over the
remaining two free-spin locations. To investigate the con-
finement length we define PABðrÞ as the average of the
distributions of the above two distances. The results, shown
in Fig. 4, indicate deconfined spinons with weak mutual
repulsion, which makes the distribution broadly peaked at
r ¼ N=2. Size-scaled distributionsNPABðrÞ for differentN
fall almost on top of each other when graphed versus r=N.
For confined spinons, the confinement length will be re-

flected in an asymptotic decay PABðrÞ � e�r=�, where � is
the size of the bound state.
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FIG. 3 (color online). Overlap PðrÞ ¼ hc 1=2ðiþ rÞjc 1=2ðiÞi
for (a) different VBS states of the J-Q3 model of size N ¼
1025, (b) at gc for different N, and (c) in the Néel state of the
long-range model (� ¼ 3=2) for different N. The curves in (a)
are fits to / e�r=� (with � � 9 at J ¼ 0) and the line in (b) shows
the form / 1=

ffiffiffi
r

p
.
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The two length scales we have discussed—the size of
the spinon wave packet � and the bound state � (for
confined spinons)—are also visible in the z-component
spin correlation function CzðrÞ ¼ hSziSziþri. We demon-

strate this for both S ¼ 1=2 and S ¼ 1 states in Fig. 5.
The reason for the spinon contributions can be understood
from Figs. 2(b) and 2(c). The unpaired spins in the S ¼ 1
state [2(c)] dominate the long-distance correlation function
if the confinement length is larger than the correlation
length of the background VBS. In addition, the short-
distance correlations of both the S ¼ 1=2 and S ¼ 1 states
are modified by the presence of strings. Indeed, as we
demonstrate in Fig. 5, by subtracting off CzðrÞ of the
S ¼ 0 state, the remaining short-distance correlations con-
tain an exponentially decaying contribution which for
both S ¼ 1=2 and S ¼ 1 is roughly twice the correlation
length, i.e., similar to the wave packet size �. In the S ¼ 1
state, the correlation function remains nonzero, / 1=N, as
r ! 1, reflecting deconfined spinons. Note that there is a
change in phase of CzðrÞ, at some r which is related to N
and � (and hence depends on g).

Conclusions and discussion.—We have introduced a
method to determine whether a spinon is a well-defined

emergent particle (excitation) of a quantum spin system,
and, if so, whether two spinons in an S ¼ 1 excitation are
deconfined or form a bound state (the size of which can be
computed). The discussion was framed around the valence-
bond basis and QMC simulations with it, but the definitions
are independent of this basis. Our arguments only rely on
the fact that one can write a state for, e.g., S ¼ 1=2 asP

rjc 0ðrÞi � j "ri (for momentum k ¼ 0, with self-evident
generalization to k � 0), where jc 0ðrÞi is an S ¼ 0 state of
all spins except the one at r (and similar decompositions
for higher S). One can, thus, compute the quantities we
have investigated here with other methods as well. The
crucial observation is that states jc 0ðrÞi � j "ri for differ-
ent r are nonorthogonal. If the unpaired spin "r is localized
within a spinon wave packet (by definition for a spinon),
then the overlaps give direct information on the size of this
wave packet. The spinon is not an independent particle if
the wave packet is uniformly delocalized over the whole
system asN ! 1, as we have demonstrated here for a Néel
state.
Our method does not rely on any knowledge or theory

of the nature of the spinon (other than it carrying spin
S ¼ 1=2). The wave-function overlaps (5) and (6) are
completely general and applicable to any system in any
number of dimensions. For 1D systems there are alterna-
tive methods to study spinons using the fact that they are
kink and antikink solitons [24], which can be created by
boundary conditions. The spinon wave function, which is
similar to that of a particle in a box [25], does not, however,
contain any direct information on the intrinsic size of the
spinon ‘‘particle.’’ A criterion of deconfinement based on
impurity (un)binding was also presented recently [26], but
that approach cannot unambiguously determine whether a
spinon is a well-defined particle. Our approach also avoids
potential differences between spinon-spinon and spinon-
impurity affinities.
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