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We show that the pseudospin, being an additional degree of freedom for carriers in graphene, can be

efficiently controlled by means of the electron-electron interactions which, in turn, can be manipulated by

changing the substrate. In particular, an out-of-plane pseudospin component can occur leading to a zero-

field Hall current as well as to polarization-sensitive interband optical absorption.
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Introduction.—The charge carriers in graphene are de-
scribed at low energies by an effective Hamiltonian being
formally equivalent to the massless two-dimensional Dirac
Hamiltonian [1–3], H�

0 ¼ @v0ð��xkx þ �ykyÞ, where � ¼
� refers to the two inequivalent corners K, K0 of the first
Brillouin zone, v0 � 106 ms�1 is the effective ‘‘speed of
light,’’ k is the two-component particle momentum opera-
tor, and �x;y are Pauli matrices describing the sublattice

degree of freedom also referred to as the pseudospin [3]. In
the original Dirac Hamiltonian the Pauli vector ~� repre-
sents the spin of a spin-1=2 particle which can be detected
in Stern-Gerlach–like experiments. The pseudospin in gra-
phene is formally similar to the true electron spin with an
important distinction given by the behavior under time and
parity [4] inversion. For the above effective model, the time
reversal operator T is just the operator C of complex
conjugation, T ¼ C, fulfilling TH�

0T
�1 ¼ H��

0 , and the

operators Hþ
0 and H�

0 get interchanged. On the other

hand, if one would (formally) interpret the Pauli matrices
as components of a genuine spin [5] (i.e., an angular
momentum), the time reversal operator would read ~T ¼
�yC giving ~TH�

0
~T�1 ¼ H�

0 . The parity operator P flips the

sign of the spatial coordinates interchanging the two sub-
lattices and, similar to T, fulfills PH�

0P
�1 ¼ H��

0 . Thus,

the initial Hamiltonian Hþ
0 þH�

0 is PT invariant but, as

we shall see, the exchange interactions can break either
invariance. It also is important that the pseudospin is not
linked with the internal magnetic moment of an electron
and does not directly interact with the external magnetic
field prohibiting Stern-Gerlach type experiments. In con-
trast to that, we predict situations where the pseudospin
manifests itself in observable quantities and can be de-
tected in transport as well as optical measurements on
graphene.

First of all, we show that the exchange electron-electron
interaction can alter the pseudospin orientation in a very
broad range. In an eigenstate of H�

0 the pseudospin is

always in the xy plane. As we shall see shortly, the ex-
change interactions can turn the pseudospin texture to the
out-of-plane phase with the out-of-plane angle depending
on the absolute value of the particle momentum. This is
due to the huge negative contribution to the Hartree-Fock

ground state energy from the valence band (i.e., ‘‘antipar-
ticle’’ states) which cannot be neglected in graphene be-
cause of the zero gap (i e., zero effective mass of carriers)
and large effective fine structure constant �� ¼ e2=ð"@v0Þ
where " is the dielectric constant depending on the envi-
ronment [6]. The exchange contribution to the ground state
energy has previously been studied in both monolayer and
bilayer graphene regarding properties such as the elec-
tronic compressibility [7] and ferromagnetism [8–10],
but the importance of the interplay between pseudospin
and electron-electron interactions has been recognized
only in [11] where single layer graphene was mentioned
in passing.
Having established the possibility of creating an out-of-

plane pseudospin orientation by means of the exchange
interaction, we apply the Boltzmann approach to derive the
electrical conductivity tensor which turns out to have Hall
components even though the external magnetic field is
absent. The mechanism of this phenomenon is intimately
linked to the pseudospin-momentum coupling which can
be read out immediately from the HamiltonianH�

0 . Similar

to the skew scattering of electrons on impurities in spin-
orbit coupled systems partly responsible for the anomalous
Hall effect [12,13], the carriers in graphene also skew to
one side of the Hall bar as long as their pseudospin has a
nonzero out-of-plane component. This effect has been
intensively studied [14–16] assuming that the out-of-plane
component occurs due to the band gap opened by the spin-
orbit coupling [14], which, however, seems to be weak in
graphene [2]. We emphasize that neither the spin-orbit
coupling nor an external magnetic field is necessary to
obtain a Hall current in graphene being in the pseudospin
out-of-plane phase.
Experimental manifestations of the pseudospin are not

limited to the electron skew scattering phenomenon but
can also be seen in the interband optical absorption.
Performing optical measurements on graphene [17] one
can obtain direct information regarding conduction and
valence band states without the advanced sample process-
ing that is necessary for transport investigations. Moreover,
the peculiar properties discovered so far make graphene a
very promising material for optoelectronic applications
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[18]. Optical absorption via the direct interband optical
transitions in graphene has been investigated in [19] but the
mechanism considered there lies essentially in the two-
dimensional nature and gapless electronic spectrum and
does nor directly involve the pseudospin orientation. Here
we show that, due to the out-of-plane pseudospin orienta-
tion, the interband absorption can be substantially reduced
or enhanced as compared to its universal value �e2=@c just
by switching the helicity of the circularly polarized light.

Exchange interactions.—The Coulomb exchange
Hamiltonian is given by

H�
exchðkÞ ¼ �X

�0

Z d2k0

4�2
Ujk�k0jj��

�0k0 ih��
�0k0 j; (1)

with Ujk�k0j ¼ 2�e2="jk� k0j and �0 ¼ � being the

band index with � ¼ þ for the conduction band.
The intervalley overlap is assumed to be negligible, and
the eigenstates of H� ¼ H�

0 þH�
exch can be formulated

as ��
k�ðrÞ ¼ eikrj��

�ki with spinors j��
þki ¼ ðcos#k

2 ;

� sin#k

2 e�i’ÞT , j��
�ki ¼ ðsin#k

2 ;�� cos#k

2 e�i’ÞT , and

tan’ ¼ ky=kx. Thus, a nonzero out-of-plane pseudospin

component corresponds to #k � �=2. To diagonalize H�

the following �-independent equation for #k must be sat-
isfied [20]:

@v0k cos#k þ
X
�0

Z d2k0

8�2
�0Ujk�k0j

� ½cos#k0 sin#k � sin#k0 cos#k cosð’0 � ’Þ� ¼ 0;

(2)

where the integration goes over the occupied states. Note
that the conduction and valence states are entangled, and
the latter cannot be disregarded even at positive Fermi
energies. Thus, in order to evaluate the integrals in
Eq. (2) a momentum cutoff � is necessary. Its value
’ 0:1 nm�1 is usually chosen to keep the number of states
in the Brillouin zone fixed [8], but our outcomes do not
depend on any particular choice of �. Substituting x ¼
k=� we arrive at

4�xcos#k

��

¼
Z 2�

0
d’0Z 1

kF=�
dx0x0

cos#k0 sin#k�sin#k0 cos#kcos’
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þx02�2xx0cos’0p :

(3)

The momentum cufoff is obviously much larger than the
Fermi momentum kF at any reasonable electron doping,
and therefore we can set the lower integral limit to zero.
Besides a trivial solution with #0 ¼ �=2 independent of k,
there are nontrivial ones #1 ¼ #ðkÞ and #2 ¼ �� #ðkÞ
with#ðkÞ shown in Fig. 1 for different��. The solutions#0

and #1;2 represent to two phases with different total ground

state energies Ein
tot (E

out
tot ) for the in-plane (out-of-plane)

pseudospin phase. The difference �Etot ¼ Ein
tot � Eout

tot per
volume for a given spin and valley reads

�Etot

@v0�
3
¼�

Z 1

0

dx0

2�
x02ð1�sin#k0 Þ���Z 2�

0
d’

Z 2�

0
d’0Z 1

0
dx

�
Z 1

0
dx0xx0

ð1�sin#k0 sin#kÞcosð’0�’Þ�cos#k0 cos#k

32�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þx02�2xx0cosð’�’0Þp :

(4)

The energy difference for �� � 1 is small because the
integrand in Eq. (4) is always multiplied by x0 and therefore
vanishes at x0 ! 0, but at larger x0 the #k0 gets close to �=2
and the integrand vanishes again. The inset in Fig. 1 shows,
however, that strong electron-electron interactions make
the out-of-plane phase energetically preferable. The esti-
mates of �� for clean graphene vary from 2 (Ref. [6]) to 2.8
(Ref. [8]) and are on the borderline of the out-of-plane
phase. Moreover, the presence of disorder can change this
qualitative picture essentially [8]. Most important, Eq. (4)
is valid for both valleys and both solutions #1;2. Thus, it is

possible to choose either the same or opposite solutions for
two valleys. The former choice breaks the parity invariance
whereas the latter one does so with the time reversal
symmetry. Both cases are worthy of consideration.
The single-particle spectrum is independent of the valley

index and given by

E�ðxÞ
@v0�

¼ �x sin#k � ��

4�

Z 2�

0
d’0 Z 1

0
dx0x0

� 1� �ðcos#k0 cos#k þ sin#k0 sin#k cos’
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ x02 � 2xx0 cos’0p ;

(5)
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FIG. 1. The pseudospin out-of-plane angle #ðkÞ for different
environments numerically calculated from Eq. (3). The corre-
sponding values of the substrate-dependent effective fine struc-
ture constant �� are taken from Ref. [6]. The inset shows the
total ground state energy difference (4) between the in-plane and
out-of-plane phases for different effective fine structure con-
stants �� ¼ e2="@v0. Increasing �� makes the out-of-plane
phase preferable.
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and the group velocity can be written as v� ¼
v�ðcos’; sin’ÞT with v� being

v�

v0
¼ � sin#k þ ��

4�

Z 2�

0
d’0 Z 1

0
dx0x0xð1� cos’0Þ

� 1� �ðcos#k0 cos#k þ sin#k0 sin#k cos’
0Þ

ðx2 þ x02 � 2xx0 cos’0Þ3=2 : (6)

The dispersion law (5) is depicted in Fig. 2 for graphene
placed on the SiO2 substrate. The interactions shift the
bands down to lower energies and change the density of
states but, most important, they open a gap [21] between
the valence and conduction band as soon as the system
changes to the pseudospin out-of-plane one phase. The gap

at k ¼ 0 equals e2�
"

R
1
0 dx

0 cos#k0 . Note that the group

velocity (6) vanishes at small momentum k=� � 1 as
long as the system is in the out-of-plane phase correspond-
ing to the almost flat bands close to k ¼ 0, which is shown
in the inset of Fig. 2. From now on we assume n-doping so
that the Fermi energy is always higher than the bottom of
the conduction band.

Zero-field Hall current.—To describe the Hall conduc-
tivity due to skew scattering we utilize the semiclassical
Boltzmann approach, which allows a physically transpar-
ent interpretation of this mechanism [13,15]. In general,
the anomalous Hall conductivity contributions can be clas-
sified by their mechanism: (i) The intrinsic contribution is
due to the anomalous velocity of carriers (being nondiag-
onal with respect to the band index [22]) which is coupled
to the equilibrium part of the distribution function. (ii) The
side-jump contribution follows from coordinate shifts dur-
ing scattering events. It occurs in the nonequilibrium part
of the distribution function as well as in the anomalous
velocity [13,15]. (iii) The skew scattering contribution is
independent of the coordinate shift and of the anomalous
velocity. It occurs when the scattering rate is asymmetric

with respect to the initial and final states and, therefore,
must be considered beyond the first Born approximation
The first two conductivity contributions do not depend on
disorder but on the out-of-plane angle #k and can be
adopted from [15]. Here, we focus on the skew scattering
contribution which can be described using the interband
incoherent Boltzmann equation where the anomalous ve-
locity is neglected but the scattering probability is calcu-
lated up to the third order in the short-range scattering
potential with the momentum-independent Fourier trans-
form V. In linear order in the homogeneous electric field E
this equation reads �eE 	 vk½�@f0ðEkÞ=@Ek� ¼ I½f1k�,
where f0ðEkÞ is the Fermi-Dirac function, f1k is the non-
equilibrium addition, and vk, Ek are given by Eqs. (5) and
(6), with � ¼ þ. The collision integral can be written as

I½f1k� ¼
R

d2k0
ð2�Þ2 wkk0 ðf1k0 � f1kÞ with wkk0 being the scatter-

ing probability. We dividewkk0 into two parts. The first one
is proportional to the cosine of the scattering angle and
calculated up to the second order in V. The second one is
proportional to the sine of the scattering angle and calcu-
lated up to the third order in V. These two parts correspond
to the conventional and skew scattering, respectively,
which can be alternatively expressed in terms of the mo-
mentum relaxation times, cf. Ref. [14]

ð��kÞ�1 ¼ nikV
2ð1þ 3cos2#�

k Þ=ð4@2vkÞ;
ð��?Þ�1 ¼ �nik

2V3 cos#�
k sin

2#�
k =ð8@3v2

kÞ:
(7)

Here, ni is the concentration of such scatterers. Since �
�
? /

1=V3 whereas ��k / 1=V2 it is natural to assume ��? 
 ��k ,
and the Hall conductivity for a given valley can be esti-
mated as ��

yx � �xx�
�
k=�

�
?jk¼kF , which can vary in a quite

broad but finite range because neither �’s diverge at low
doping thanks to the k-dependent group velocity (6). Note
that K and K0 contribute identically to the total Hall con-
ductivity �yx ¼

P
��

�
yx if the out-of-plane pseudospin po-

larization is opposite in the two valleys, i.e., #1 and #2 are
assigned to #þ

k and #�
k , respectively, and the time reversal

invariance is broken by the exchange interactions. On the
other hand, if the out-of-plane pseudospin polarization is
the same in both valleys (i.e., either of #1;2 is assigned to

both #�
k , breaking the parity invariance) the Hall currents

in the two valleys have opposite directions resulting in the
valley Hall effect [23]—another analog of the well-known
spin Hall effect [14].
Interband optical absorption.—From H�

0 one can de-

duce the following interaction Hamiltonian between the
electromagnetic wave and carriers in graphene H�

int ¼
ev0

c ð��xAx þ �yAyÞ, which couples the vector potential

A and pseudospin ~�. As consequence, the interband tran-
sition matrix elements turn out to be sensitive to the light
polarization and pseudospin orientations in the initial and
final states. To be specific we assume a monochromatic
light of frequency !, normal incidence (i.e., zero momen-
tum transfer from photons to electrons), and circular
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FIG. 2. The dispersion law E�ðkÞ in the in-plane (dashed
curves) and out-of-plane (solid curves) phases for �� ¼ 0:8
corresponding to the SiO2 substrate [6]. The curves for both
phases coincide for momenta larger than a certain critical value
where #k ¼ �=2 becomes independent of k; see Fig. 1. The inset
shows the gap region in detail.
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polarization (fulfilling Ax ¼ �iA=
ffiffiffi
2

p
, Ay ¼ A=

ffiffiffi
2

p
). The

probability to excite an electron from the valence band to
an unoccupied state in the conduction band can be calcu-
lated using the golden rule. Finally, the absorption P� can
be calculated as a ratio between the total electromagnetic
power Wa absorbed by graphene per unit square and the
incident energy flux Wi ¼ !2A2=4�c. Then, the optical
absorption for K valley (� ¼ þ) reads

Pþ ¼ �e2

@c

4�v0

!

Z 1

0
dxx� f sin

4 #þ
k

2

cos4
#þ
k

2

g

� �

�
Eþ � E� � @!

@v0�

�
; (8)

where the multipliers sin4ð#þ
k =2Þ and cos4ð#þ

k =2Þ are for

two opposite helicities of light, and for K0 valley they are
interchanged. If the out-of-plane pseudospin polarization is
chosen to be opposite in the two valleys, then the total
absorption P ¼ P

�P
� at small k=� turns out to be sensi-

tive to the helicity of light: It is substantially reduced for
one and facilitated for another. Moreover, changing the
excitation energies @! we can investigate the dependence
#ðkÞ shown in Fig. 1. If the out-of-plane pseudospin po-
larization is chosen to be the same in both valleys, then the
total absorption does not depend on the radiation helicity
but the two valleys turn out to be differently occupied by
the photoexcited carriers which is interesting effect on its
own [23]. In the in-plane phase with # ¼ �=2 the total
absorption does not depend on light polarization, and in the

noninteracting limit it equals to the universal value �e2

@c , as

expected [19].
Conclusions.—We have demonstrated that the pseudo-

spin quantity, being until now rather uncontrollable and
almost unmeasurable, can be ‘‘unfrozen’’ by the exchange
electron-electron interactions (1) and play an essential role
in optical and transport properties of graphene. We hasten
to say that the Hartree-Fock approximation employed here
has generically a tendency to overestimate ordering such as
the pseudospin out-of-plane polarization. We believe, how-
ever, that the pseudospin eigenstates j��

�ki derived above

are much more robust because their special pseudospin-
momentum entangled structure stems from the free
Hamiltonian H�

0 , and the electron-electron interactions

only modify it, which makes our predictions reliable at
the qualitative level. From this point of view, the pseudo-
spin can be seen as an additional degree of freedom similar
to the true spin but unaffected by the magnetic field
directly. With this similarity in mind, one can think about
pseudospin ferromagnetism [11], pseudospin accumula-
tion at the sample’s edge by means of the zero-field Hall
current, pseudospin selectivity in the optical absorption (8),
and, probably, pseudospin filtering and switching. In the

more distant future, one can imagine some useful effects
based on the pseudospin polarization such as an all-
electrical counterpart for giant magnetic resistivity, which
is obviously very promising for application. This Letter
should be seen as a first step in this direction.
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