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We develop a theory of spin noise in semiconductor nanowires considered as prospective elements for

spintronics. In these structures, spin-orbit coupling can be realized as a random function of a coordinate

correlated on a spatial scale of the order of 10 nm. By analyzing different regimes of electron transport and

spin dynamics, we demonstrate that the spin relaxation can be very slow, and the resulting noise power

spectrum increases algebraically as the frequency goes to zero. This effect makes spin phenomena in

nanowires best suitable for studies by rapidly developing spin-noise spectroscopy.
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Nanostructures are the promising hardware elements for
spintronics [1]—a rapidly developing branch of physics
and technology aiming at studies and application of spin-
dependent phenomena in the charge transport and infor-
mation processing. The quest for systems with ultralong
spin relaxation times [2] is one of the main challenges
in this field. Since the dynamical spin fluctuations [3],
characterized by correlations on the spin relaxation time
scale, are seen as spin noise in the frequency domain, this
search can be donewith recently developed highly accurate
low-frequency spin-noise spectroscopy [4] aimed at the
measurement of intrinsic equilibrium spin dynamics.
Spin-noise spectroscopy allows one to study the slow
spin dynamics in (110)-grown quantum wells [5] and in
quantum dots [6]. A theoretical background of this method
is given, e.g., in Refs. [7–9].

An interesting class of semiconductor nanostructures
demonstrating peculiar and slow spin dynamics are the
quantum wires [10–12], where, e.g., InAs, InSb, as well
as GaAs=AlGaAs systems are the prospective realizations.
The effects of spin-orbit (SO) coupling on the transport
were clearly demonstrated there [13,14], and the nanowire-
based qubits were introduced [15,16]. A SO coupling
induced effective magnetic field acting on electron spins
in nanowires is directed parallel or antiparallel to a certain
axis [17–21], resulting in a giant spin relaxation anisotropy
similar to that expected in some two-dimensional systems
[22]. Since the SO coupling is a structure- and material-
dependent property, all sorts of disorders (random doping
[23–26], interface fluctuations [27], random variations in
the shape, etc.) which cause electron scattering and non-
zero resistivity can cause local variations in the coupling.
As a result, in addition to the regular SO coupling, caused
by the lack of bulk (Dresselhaus term) or structure (Rashba
term) inversion symmetry, all low-dimensional structures
inevitably have the random contribution in it. The spatial
scale of the fluctuations is of the order of 10 nm, as de-
termined by the characteristic distances in nanostructure.

The fluctuations were shown to give rise to a number of
fascinating phenomena [28–30]. However, their role in
quantum wires was not studied so far.
Here, we address theoretically the electron spin dynam-

ics in ballistic and diffusive semiconductor nanowires aim-
ing at the study of the spin-noise spectrum. Different
regimes of electron spin relaxation are determined, and
the crossovers between them are analyzed in detail. In
particular, we demonstrate that, when the electron motion
is diffusive and the dominant contribution to the SO inter-
action is random, the spin relaxation becomes algebraic
rather than exponential and the spin-noise power spectrum

diverges at low frequencies ! as 1=!1=2, showing colored
noise [31–33] well-suited for the studies by the spin-noise
spectroscopy. A very slow spin dynamics resulting in the
low-frequency noise divergence makes nanowires an ex-
ception among semiconductor systems.
The spin-noise spectroscopy, reviewed in Ref. [4], is

based on the optical monitoring of the spin fluctuations
[34] in Faraday, Kerr, or ellipticity signals measured with a
weak linearly polarized probe beam incident on a single
wire or a wire array sample; see Fig. 1. It can be shown
similarly to Refs. [4,9,35] that, for the probe tuned to
the fundamental absorption edge, the Kerr rotation angle
�K / sz [36]; hence, its autocorrelation function is directly
related to the spin noise: h�KðtÞ�Kðt0Þi / hszðtÞszðt0Þi,
where szðtÞ is the density of the z component of the total
electron spin. As a result, this optical technique measures
long-range correlations of equilibrium spin fluctuations
occurring in the illuminated spot.
We consider a single-channel quantum wire extended

along the x axis and represent the SO Hamiltonian as

HSO ¼ 1

2
½�ðxÞkx þ kx�ðxÞ���: (1)

Here, kx ¼ �i@=@x is the electron wave vector component
along the wire axis, and �ðxÞ is the coordinate-dependent
SO coupling strength. In Eq. (1), we assumed that the spin
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quantization axis, �, is fixed, and �� is the component of
the spin operator along this axis. The specific form of the
SO Hamiltonian Eq. (1) implies that the effective field
acting on electron spin points either parallel or antiparallel
to the axis �. This is obvious for a constant �ðxÞ [17–21]
and holds true, provided that the microscopic symmetry of
the fluctuations forming the SO coupling randomness is the
same as the overall symmetry of the system.

The SO coupling is assumed to be the sum of the
coordinate-independent contribution, �0, and the
Gaussian random function with zero average, �rðxÞ, such
as �ðxÞ ¼ �0 þ �rðxÞ with the correlation function [29]:

h�rðxÞ�rðx0Þi ¼ h�2
riFcorrðx� x0Þ; (2)

where h�2
ri is the mean square of SO coupling fluctuations

and the range function Fcorrðx� x0Þ. We introduce also the
typical correlation length of the SO coupling

ld ¼
Z 1

0
FcorrðxÞdx; (3)

characterizing the size of the correlated domain of the
random SO coupling. Details of the models of random
SO coupling can be found in Ref. [29].

We begin with the semiclassical regime, where the SO
coupling disorder is smooth on the scale of electron wave-
length, ld � �F, where the wavelength of the Fermi-level
electrons �F ¼ 2�=kF, with kF being the Fermi wave
vector for the degenerate electron gas. The Hamiltonian
(1) implies that the spin rotation angle around the � axis
during the motion from the point x0 to x1 is

�ðx1; x0Þ ¼ 2m

@
2

Z x1

x0

�ðx0Þdx0; (4)

where m is the electron effective mass. Equation (4) shows
that the angle is solely determined by electron initial and
final positions and does not depend on the history of
the motion between these points. This result, being well-
established for the systems with regular SO coupling
[20,37–40], holds also for the nanowires with the SO

coupling disorder. As follows from Eq. (1), the spin pre-
cession rate is proportional to the electron velocity and
given coordinate-dependent function. Hence, it does not
matter whether the electron starting from the point x0
reached the point x1 ballistically or diffusively: all contri-
butions to the spin precession of the closed paths, where an
electron passes the same configuration of �ðxÞ in the
opposite directions, cancel each other.
The temporal evolution of electron spin is directly re-

lated to the electron motion along the wire. We consider
here spin projections at a given z axis, perpendicular to the
spin quantization axis �. The time dependence of the
electron spin z component averaged over its random spatial
motion and over the random precession caused by the field
�ðxÞ can be most conveniently characterized by the corre-
lator hszðtÞszð0Þi ¼ hs2zð0ÞiCssðtÞ with the normalized cor-
relation function

C ssðtÞ ¼
Z 1

�1
dxpðx; tÞhcos½�ðx; 0Þ�i; (5)

where pðx; tÞ is the probability that an electron travels the
distance x during the time t. Note that CssðtÞ can be under-
stood as the disorder-averaged electron spin z component
found with the initial condition szð0Þ ¼ 1. It results from
the linearity of the spin dynamics equations: the correlators
hsiðtÞsjð0Þi satisfy exactly the same equations as average

values hsiðtÞi (i; j ¼ x; y; z). In derivation of Eq. (5), we
assumed also that the scattering of electrons, which deter-
mines pðx; tÞ, is not correlated with the random SO field
�rðxÞ; hence, the averaging over the realizations of �rðxÞ
denoted by the angular brackets and over the trajectories
can be considered independently. This can occur in nano-
wires where random Rashba fields are induced by doping,
while the momentum scattering is due to the wire width
fluctuations. If the same local disorder determines the
electron scattering and random SO fields, in relatively
clean systems, the electron mean free path l exceeds by
far the disorder correlation length ld in Eq. (3). Hence,
spatial scales of two random processes—l for the electron
backward scattering in the random potential and ld for the
spin precession—are strongly different. As a result, on the l
scale, the memory of the short-range correlations is lost,
and Eq. (5) holds. Although Eq. (5) is presented for the
smooth SO coupling disorder, where the electron motion is
semiclassical, ld=�F � 1, a general Green’s function ap-
proach confirms it for arbitrary ld=�F values.
Our next step is to perform the averaging of cos½�ðx; 0Þ�

in Eq. (5) over the random realizations of the �ðxÞ field.
For this purpose, we recast

cos½�ðx; 0Þ� ¼ Re

�
exp

�
i
2m�0

@
2

x

�
exp½i#rðxÞ�

�
; (6)

where

#rðxÞ ¼ 2m=@2
Z x

0
�rðx0Þdx0 (7)

FIG. 1 (color online). Schematic plot of the experimental
configuration: a quantum wire (dark stripe) is illuminated by a
linearly polarized beam, and the Kerr rotation angle of its
polarization plane �K is measured. Polarizations of the beams
are marked by double-headed arrows. The dashed arrow corre-
sponds to the polarization of the reflected beam in the absence of
the Kerr effect.
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is the contribution of the random SO coupling to the spin
rotation angle. We expand the last exponent in the series
in #r, assuming the Gaussian SO coupling disorder. In the
averaging, the odd powers of the spin rotation angle vanish,
h�2nþ1

r ðxÞi ¼ 0, for integer n, and even powers can be
expressed solely with h�2rðxÞi as
h�2nr ðxÞi ¼

��
2m

@
2

Z x

0
�rðx0Þdx0

�
2n
�
¼ ð2n� 1Þ!!h�2rðxÞin:

(8)

A direct calculation shows that the mean square h�2rðxÞi
caused by the random SO interaction is given by

h�2rðxÞi ¼ 2

�
2m

@
2

�
2h�2

ri
Z x

0
dx0

Z x0

0
dyFcorrðyÞ: (9)

Finally, Eq. (5) reduces to

CssðtÞ¼
Z 1

�1
dxpðx;tÞcos

�
2m�0

@
2

x

�
exp½�h�2rðxÞi=2�: (10)

When h�2rðxÞi becomes considerably larger than 1, spins
are completely dephased. Equation (10) is our central
result: it relates temporal average spin dynamics with
electron motion along the wire. The distribution function
of electron displacements, pðx; tÞ, presented for different
regimes of electron motion below, enables us to calculate
spin evolution by Eq. (10). The spin-noise power spectrum
is given by the transform of CssðtÞ [9]:

hs2zi! ¼ 2
Z 1

0
CssðtÞ cosð!tÞdt: (11)

To get a better insight into the problem, we begin with
the key limits [41]. First, for the ballistic electron dynam-
ics, pðx; tÞ ¼ �ðx� vFtÞ, where vF ¼ @kF=m is the Fermi
velocity. The ballistic motion is realized on the temporal
scale t � � ¼ l=vF, with � being the momentum relaxa-
tion time. We are interested in the spin dynamics on the
time scale t � �d ¼ ld=vF, where �d is the time during
which an electron passes the correlated interval of the SO
coupling fluctuations. Using Eq. (10), we obtain damped
oscillations of the spin z component:

C ssðtÞ � cosð�0tÞ expð�t=�s;rÞ; (12)

with the frequency �0 ¼ 2m�0vF=@
2 determined by the

averaged SO coupling and the decay time caused by the SO
coupling fluctuations

1

�s;r
¼

�
2mvF

@
2

�
2h�2

ri�d: (13)

Equation (13) for the spin relaxation time �s;r is a result of
random spin precession [29]. The spin-noise power spec-
trum calculated using Eqs. (11) and (12) reads

hs2zi! ¼ 2�s;r Re
1� i!�s;r

�2
0�

2
s;r þ ð1� i!�s;rÞ2

; (14)

with the result presented in Fig. 2.

This ballistic regime of spin dynamics, however, can be
realized only in very clean systems, where �0� � 1.
Otherwise, electron spin evolution occurs at the time
scale, where an electron moves diffusively (Fig. 3, upper
panel), i.e.,

pðx; tÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
�Dt

p e�x2=4Dt; (15)

where D ¼ v2
F� is the diffusion coefficient. If the SO

coupling is uniform and the condition �0� � 1 is satis-
fied, spin relaxation is exponential. The relaxation time is
given by the Dyakonov-Perel formula �s;DP ¼ 1=ð�2

0�Þ
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FIG. 2 (color online). The spin-noise power spectrum, hs2zi!,
for ballistic propagation,�0�s;r ¼ 2. Because of the exponential
decay in Eq. (12), it is finite at ! ¼ 0, with the width determined
by the spin relaxation time �s;r. The spectrum peaks at the

frequency � �0, since the average electron spin rotates in the
SO field at the rate �0 and asymptotically decays as !�2, in
accordance with the fluctuation-dissipation theorem.

FIG. 3 (color online). Upper panel: schematic illustration of
the displacement distribution pðx; tÞ for two different time mo-
ments: t0 < t1. Lower panels: the quantum wire and spins of a
diffusing electron for the random and regular SO couplings,
respectively. For the random SO coupling, if the electron is
within the Ls distance from its initial point [see Eq. (17)], its
spin is preserved; when it leaves this interval, the spin dephases.
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[17,21]. The spin-noise spectrum has a Lorentzian form
hs2zi! ¼ 2�s;DP=ð1þ!2�2s;DPÞ with the width determined

by the relaxation time.
New physical features arise when the SO coupling fluc-

tuations dominate over the regular contribution. From
now on, we put �0 ¼ 0, consider the system where SO
coupling is purely random, and concentrate on the long-
time (t � �d; �; �s;r) dynamics. At these times, the system

in Eq. (10) is characterized by two length parameters.

One parameter is the diffusion length
ffiffiffiffiffiffi
Dt

p
in Eq. (15);

the other one,

Ls ¼
Z 1

0
dx exp½�h�2rðxÞi=2�; (16)

characterizes spin randomization. At sufficiently long

times, when
ffiffiffiffiffiffi
Dt

p � Ls, one can take pð0; tÞ instead of
pðx; tÞ and immediately obtain from Eq. (10) that the
relaxation is algebraic rather than exponential:

CssðtÞ � pð0; tÞ
Z 1

�1
dx exp½�h�2rðxÞi=2� ¼ Lsffiffiffiffiffiffiffiffiffiffi

�Dt
p : (17)

Equation (17) predicts extremely long spin decoherence
described by the inverse square root law: hszðtÞi / 1=

ffiffi
t

p
.

This surprising result has a transparent physical interpre-
tation (see Fig. 3): Indeed, if an electron is displaced from
its initial position by a sufficiently large distance, x * Ls,
its spin rotation angle becomes so large that it does not
contribute to the total spin polarization, owing to
exp½�h�2rðxÞi=2� in Eq. (10). As a result, the spin polar-
ization is supported by the electrons located in the vicinity
of their initial positions, mainly due to the return after
multiple scatterings by the random potential. The fraction
of such electrons, in agreement with the diffusion distribu-
tion, decays as pð0; tÞ / 1=

ffiffi
t

p
, resulting in the same be-

havior in the spin polarization. It is interesting to mention
that this qualitative argument does not work for the con-
stant SO coupling despite the fact that the spin of the
electron is also restored here upon the return to the origin.
The reason is that, due to the oscillations of the spin on the
spatial scale of the order of @

2=m�0 (see Fig. 3, lower
panel) in Eq. (10), the diffusive return of electrons to the
origin is insufficient for formation of the algebraic relaxa-
tion tail.

Another realization of the 1=
ffiffi
t

p
spin decay can be

achieved for the very strong random SO couping where
the spin relaxation occurs within one nanosize domain of
the SO coupling that is, at the electron displacement, much
less than ld. In this case, the spin relaxation rate is due to
the Dyakonov-Perel mechanism and is determined by the
local value of �ðxÞ inside the domain. The spins of elec-
trons located in the intervals with large �ðxÞ will relax
quickly, while the spins of those experiencing weak �ðxÞ
will relax slowly.

Slow nonexponential spin relaxation, described by
Eq. (17), manifests itself in the low-frequency spin-noise
spectrum. From Eq. (11), it follows that hs2zi! / 1=

ffiffiffiffi
!

p
,

i.e., the spin noise diverges at ! ! 0. Such a nontrivial
behavior is inherent to the quantum wires with random SO
coupling, where the spin restores upon its return to the
origin: in multichannel wires for sufficiently fast interchan-
nel scattering [42] and in two-dimensional systems, spin
relaxation is exponential [29] and hs2zi!¼0 is finite.
To conclude, we studied theoretical spin noise in a

semiconductor nanowire for different regimes of the elec-
tron propagation. We demonstrated that, if the spin relaxa-
tion is determined by the randomness in the SO coupling,
spin relaxation becomes algebraic, being closely related to
the high probability for an electron to stay close to its
initial position as a result of a multiple scatterings in the
random potential. This behavior can appear in at least two
possible regimes: (i) when the electron motion is diffusive
and (ii) when the spin relaxation occurs on a small spatial
scale of the order of 10 nm. In any of these cases, the spin-
noise power spectrum shows colored 1=

ffiffiffiffi
!

p
noise. In addi-

tion, this observation shows that low-frequency optical
spin-noise spectroscopy is an excellent tool for studying
spin phenomena in semiconductor nanowires and the char-
acterization of random potential and SO coupling there.
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