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Melting in two spatial dimensions, as realized in thin films or at interfaces, represents one of the most

fascinating phase transitions in nature, but it remains poorly understood. Even for the fundamental hard-

disk model, the melting mechanism has not been agreed upon after 50 years of studies. A recent

Monte Carlo algorithm allows us to thermalize systems large enough to access the thermodynamic

regime. We show that melting in hard disks proceeds in two steps with a liquid phase, a hexatic phase, and

a solid. The hexatic-solid transition is continuous while, surprisingly, the liquid-hexatic transition is of

first order. This melting scenario solves one of the fundamental statistical-physics models, which is at the

root of a large body of theoretical, computational, and experimental research.
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Generic two-dimensional particle systems cannot crys-
tallize at finite temperature [1–3] because of the impor-
tance of fluctuations, yet they may form solids [4]. This
paradox has provided the motivation for elucidating the
fundamental melting transition in two spatial dimensions.
A crystal is characterized by particle positions which fluc-
tuate about the sites of an infinite regular lattice. It has
long-range positional order. Bond orientations are also the
same throughout the lattice. A crystal thus possesses long-
range orientational order. The positional correlations of a
two-dimensional solid decay to zero as a power law at large
distances. Because of the absence of a scale, one speaks of
‘‘quasi–long-range’’ order. In a two-dimensional solid, the
lattice distortions preserve long-range orientational order
[5], while in a liquid both the positional and the orienta-
tional correlations decay exponentially.

Besides the solid and the liquid, a third phase, called
‘‘hexatic,’’ has been discussed but never clearly identified
in particle systems. The hexatic phase is characterized by
exponential positional but quasi–long-range orientational
correlations. It has long been discussed whether the melt-
ing transition follows a one-step first-order scenario be-
tween the liquid and the solid (without the hexatic) as in
three spatial dimensions [6], or whether it agrees with the
celebrated Kosterlitz, Thouless, Halperin, Nelson, and
Young [7–9] (KTHNY) two-step scenario with a hexatic
phase separated by continuous transitions from the liquid
and the solid [10–18].

Two-dimensional melting was discovered [4] in the sim-
plest particle system, the hard-disk model. Hard disks (of
radius �) are structureless and all configurations of non-
overlapping disks have zero potential energy. Two isolated
disks only feel the hard-core repulsion, but the other disks
mediate an entropic ‘‘depletion’’ interaction (see, e.g., [19]).
Phase transitions result from an ‘‘order from disorder’’
phenomenon: At high density, ordered configurations can
allow for larger local fluctuations, thus higher entropy, than
the disordered liquid. For hard disks, no difference exists

between the liquid and the gas. At fixed density �, the phase
diagram is independent of temperature T ¼ 1=kB�, and the
pressure is proportional to T, as discovered by D. Bernoulli
in 1738. Even for this basic model, the nature of the melting
transition has not been agreed upon.
The hard-disk model has been simulated with the local

Monte Carlo algorithm since the original work by
Metropolis et al. [20]. A faster collective-move ‘‘event-
chain’’ Monte Carlo algorithm was developed only re-
cently [21] (see [22]). We will use it to show that the
melting transition neither follows the one-step first order
nor the two-step continuous KTHNY scenario.
To quantify orientational order, we express the local

orientation of disk k through the complex vector �k ¼
hexpð6i�klÞi, with hi the average over all the neighbors l
of k. The angle �kl describes the orientation of the bond kl
with respect to a fixed axis. The sample orientation is defined
as � ¼ 1=N

P
k�k. For a perfect triangular lattice, all the

angles 6�kl are the same and j�kj ¼ j�j ¼ 1 (see [22]).
In Fig. 1, the local orientations of a configuration with

N ¼ 10242 disks at density � ¼ N��2=V ¼ 0:708 in a
square box of volume V are projected onto the sample
orientation and represented using a color code (see [22]).
Inside this configuration, a vertical stripe with density
�0:716 preserving the orientational order over long dis-
tances coexists with a stripe of disordered liquid of lower
density�0:700. Each stripe corresponds to a different phase.

The two interfaces of length ’ ffiffiffiffi
N

p
close on themselves via

the periodic boundary conditions. Stripe-shaped phases as in
Fig. 1(a) are found in the center of a coexistence interval� 2
½0:700; 0:716�, whereas close to its endpoints, a ‘‘bubble’’ of
the minority phase is present inside the majority phase for
� * 0:700 and � & 0:716 (see Fig. 2). This phase coexis-
tence is the hallmark of a first-order transition.
The first-order transition shows up in the equilibrium

equation of state PðVÞ (see Fig. 2). At finite N, the free
energy is not necessarily convex (as it would be in an infinite
system) and the equilibrium pressure PðVÞ ¼ �@F=@V can
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form a thermodynamically stable loop due to the interface
free energy. The pressure loop in the coexistence window of
a finite system is caused by the curved interface between a
bubble of minority phase and the surroundingmajority phase
[see Fig. 2(b) and 2(d)]. In a system with periodic boundary
conditions, the pressure loop contains a horizontal piece
corresponding to the ‘‘stripe’’ regime, where the interfaces
are flat. This is visible near �� 0:708 for the largest sys-
tems in Fig. 2. In a finite system, the Maxwell construction
suppresses the interface effects. For the equation of state of
Fig. 2(a), this construction confirms the boundary densities
� ¼ 0:700 and � ¼ 0:716 of Fig. 1 for the coexistence
interval, with very small finite-size effects. The interface
free energy per disk, the hatched area in Fig. 2, depends on

the length / ffiffiffiffi
N

p
of the interface in the stripe regime so that

�f ¼ �F=N / 1=
ffiffiffiffi
N

p
[see Fig. 2(f)].

The first-order nature of the transition involving the
liquid is thus established by (i) the visual evidence of phase

coexistence in Fig. 1, (ii) the / 1=
ffiffiffiffi
N

p
scaling of the inter-

face free energy per disk [23], and (iii) the characteristic
shape of the equation of state in a finite periodic system
[24–26]. We stress that the system size is larger than the
physical length scales so that the results hold in the ther-
modynamic limit (see [22]).
In the coexistence interval, the individual phases are

difficult to analyze at large length scales because of the
fluctuating interface, and only the low-density coexisting
phase is identified as a liquid with orientational correlations
below a scale of �100� [see Figs. 1(a) and 1(d)]. Unlike
constant NV simulations, Gibbs ensemble simulations can
have phase coexistence without interfaces, but these

FIG. 2 (color). Equilibrium equation of state for hard disks.
The pressure is plotted vs volume per particle [v ¼ V=N) (lower
scale) and density � (upper scale)]. In the coexistence region, the
strong system-size dependence stems from the interface free
energy. The Maxwell constructions (horizontal lines) suppress
the interface effects (with a convex free energy) for each N.
Stripe [(c), for N ¼ 10242] and bubble configurations (b), (d) are
shown in the coexistence region, together with two single-phase
configurations (a), (e). The interface free energy per disk ��f
(hatched area) scales as 1=

ffiffiffiffi
N

p
(f).

FIG. 1 (color). Phase coexistence for 10242 thermalized hard disks at density � ¼ 0:708. (a) Color-coded local orientations �k

showing long orientational correlations [blue region, see (b), (c)] coexisting with short-range correlations [see (d)]. (e) Local densities
(averaged over a radius of 50�), demonstrating the connection between density and local orientation (see [22]). In (b), (c), and (d),
disks with five (seven) neighbors are colored in gray (black).
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simulations are very slow at large N (see [22]). The single-
phase system at density � ¼ 0:718 is above the coexistence
window for allN (see Fig. 2), and it allows us to characterize
the high-density coexisting phase.

Positional order can be studied in the two-dimensional
pair correlation gð�rÞ, the high-resolution histogram of
periodic pair distances �rij ¼ ri � rj sampled from all

NðN � 1Þ=2 pairs i, j of disks. To average this two-
dimensional histogram over configurations (as in Fig. 3)
the latter are oriented such that the �x axis points in the
direction of the sample orientation �. At short distances,
hexagonal order is evident at � ¼ 0:718 [see Fig. 3(a)].
The excellent contrast between peaks and valleys of gð�rÞ
at small j�rj * 2� underlines the single-phase nature of
the system at this density. The cut of the histogram along
the positive �x axis leaves no doubt that the system has
exponentially decaying positional order on a length scale
of �100� and cannot be a solid. The (one-dimensional)
positional correlation function ckðrÞ, computed by the
Fourier transform of gð�rÞ, fully confirms these statements
(see [22]).

The orientational correlations at density � ¼ 0:718 de-
cay extremely slowly and do not allow us to distinguish
between quasi-long-range and long-range order (see [22]).
However, short-ranged positional correlation is inconsis-
tent with long-ranged orientational order. It follows that the
orientation must be quasi-long-ranged with a small expo-
nent & 0, and that the system at � ¼ 0:718 and the high-
density coexisting phase are both hexatic.

The two-dimensional pair correlation gð�rÞ � 1 of
Fig. 3(b) allows us to follow the transition from the hexatic
to the solid: The positional order increases continuously
with density and crosses over into power-law behavior at
density �� 0:720, with an exponent ’ �1=3 which cor-

responds to the stability limit of the solid phase in the
KTHNY scenario. The hexatic-solid transition thus takes
place at � * 0:720. At this density, the positional correla-
tion function at large distances r displays the finite-size
effects characteristic of a continuous transition, but up to a
few hundred �, ck is well stabilized with the system size
(see [22]). Moreover, no pressure loop is observed in the
equation of state, and the compressibility remains very
small. The system is clearly in a single phase. Unlike the
liquid-hexatic transition, the hexatic-solid transition there-
fore follows the KTHNY scenario, and is continuous.
The single-phase hexatic regime is confined to a density

interval � 2 ½0:716; 0:720�. Although narrow, it is an order
of magnitude larger than the scale set by density fluctuations
for our largest systems and can be easily resolved (see [22]).
In the hexatic phase, the orientational correlations decay
extremely slowly. The exponent of the orientational corre-
lations is close to zero and negative. It remains far from the
lower limit of�1=4 at the continuous KTHNY transition, as
this transition is preempted by a first-order instability.
The event-chain algorithm is about 2 orders of magni-

tude faster than the local Monte Carlo algorithm used up to
now, allowing us to thermalize dense systems with up to
10242 disks for the first time. To illustrate convergence
toward thermal equilibrium and to check that hard disks in
the window of densities � 2 ½0:700; 0:716� are indeed
phase separated, we show in Fig. 4 two one-week simula-
tions of our largest systems after quenches from radically
different initial conditions, namely, the (unstable) crystal,
with j�j ¼ 1, and the liquid, for which j�j ’ 0. For both
initial conditions, a slow process of coarsening takes place
[see Figs. 4(a) and 4(b)]. Phase separation is observed after
�106 displacements per disk, and the sample orientation
takes on similar absolute values [see Fig. 4(c)]. Effective
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FIG. 3 (color). Configuration-averaged two-dimensional pair correlation. gð�rÞ is obtained from the two-dimensional histogram of
periodic distances �rij ¼ ri � rj. (a) Pair correlation gð�rÞ at density � ¼ 0:718 for small �r ¼ ð�x;�yÞ. Each disk configuration is
oriented with respect to �. The excellent contrast between the peak and the bottom values of gð�rÞ at j�rj * 2�, of about ð16:0:2Þ,
provides evidence for the single-phase nature of the system. (b) Cut of the sample-averaged gð�rÞ � 1 for �r ¼ ð�x; 0Þ. Decay is
exponential for � ¼ 0:718 and algebraic for � ¼ 0:720. (See [22] for positional and orientational correlation functions.)
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simulation times of many earlier calculations were much
shorter [14,15], and the simulations remained in an out-of-
equilibrium state which is homogeneous on large length
scales, whereas the thermalized system is phase separated
and therefore inhomogeneous. The production runs for
N ¼ 10242 were obtained from Markov chains with run-
ning times of nine months, 30 times larger than those of
Figs. 4(a) and 4(b).

The solution of the melting problem presented in this
work provides the starting point for the understanding of
melting in films, suspensions, and other soft-condensed-
matter systems. The insights obtained combine thermody-
namic reasoning with powerful tools: advanced simulation
algorithms, direct visualization, and a fail-safe analysis of
correlations. These tools will all be widely applicable, for
example, to study the crossover from two- to three-
dimensional melting as it is realized experimentally with
spheres under different confinement conditions [17].

In simple systems such as hard disks and spheres, entropic
and elastic effects have the same origin: elastic forces are
entropically induced. For general interaction potentials, en-
tropy and elasticity are no longer strictly linked and order-
disorder transitions, which can then take place as a function
of temperature or of density, might realize other melting
scenarios [27]. Theoretical, computational, and experimen-
tal research onmore complex microscopic models will build
on the hard-disk solution obtained in this work.

We are indebted to K. Binder and D. R. Nelson for
helpful discussions and correspondence. We thank J.
Dalibard and G. Bastard for a critical reading of the
manuscript.
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FIG. 4 (color). Approach to thermal equilibrium from different initial conditions. (a), (b): 10242 hard disks at density � ¼ 0:708,
after a quench from (a) a high-density crystal and from (b) a low-density liquid, showing coarsening leading to phase separation (color
code for �k as in Fig. 1(b), see also [22]). Each of the runs takes about one week of CPU time. (c) Absolute value of the sample
orientation for the simulations in (a) and (b), compared to runs with the local Monte Carlo algorithm from the same initial conditions
(time in attempted displacements per disk). The correlation time of the event-chain algorithm, on the order of 106 displacements per
disk, estimated from (c), agrees with the correlation time estimated in our production runs with 6� 107 total displacements per disk.
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