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Álvaro Obregón 64, 78000 San Luis Potosı́, SLP, México
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We employ the principle of dynamic equivalence between soft-sphere and hard-sphere fluids [Phys.

Rev. E 68, 011405 (2003)] to describe the interplay of the effects of varying the density n, the temperature

T, and the softness (characterized by a softness parameter ��1) on the dynamics of glass-forming soft-

sphere liquids in terms of simple scaling rules. The main prediction is the existence of a dynamic

universality class associated with the hard-sphere fluid, constituted by the soft-sphere systems whose

dynamic parameters depend on n, T, and � only through the reduced density n� � n�HSðT�; �Þ. A number

of scaling properties observed in recent experiments and simulations involving glass-forming fluids with

repulsive short-range interactions are found to be a direct manifestation of this general dynamic

equivalence principle.
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The formation of colloidal glasses and gels has been the
subject of intense study during the last two decades [1]. On
the other hand, within their overwhelmingly rich phenome-
nology, molecular glass-forming liquids exhibits intriguing
universal features [2]. It has been natural to expect that the
phenomenology of both the glass transition in ‘‘thermally
driven’’ molecular glass formers and the dynamic arrest
transition in ‘‘density-driven’’ hard-sphere colloidal sys-
tems share a common underlying universal origin [3]. In
fact, interesting scalings of the equilibrium dynamics of
simple models of soft-sphere glass formers, exposed by
systematic computer simulations [4,5], provide an initial
clue to one possible physical origin of this universality,
whose fundamental understanding, however, still consti-
tutes an important theoretical challenge. This challenge
provides the main motivation of this work.

An essential aspect of the equilibrium perturbation the-

ory of liquids is the static structural equivalence principle

[6–8]. This principle states that a fluid at number concen-

tration n and temperature T, whose particles interact

through a moderately soft and purely repulsive potential

uð�ÞðrÞ (where ��1 is some measure of softness), is struc-

turally equivalent to a hard-sphere (HS) system with an

effective HS diameter �HS ¼ �HSðn; T; �Þ and an effective
volume fraction�HS ¼ �HSðn; T; �Þ ¼ �n�3

HSðn; T; �Þ=6.
This means that the static structure factor (SSF)

Sðk;n; T; �Þ of the soft-sphere system is given by

Sðk;n; T; �Þ � SHSðk�HS;�HSÞ, where SHSðk�;�Þ is the

SSF of the fluid of hard spheres of diameter � and volume

fraction �. This static structural equivalence automatically

implies the universality of the thermodynamic properties

of the class of soft-sphere fluids defined, precisely, by this
isostructurality condition.
The dynamic extension of this soft-hard equivalence was

proposed more recently [9], thus extending the referred
thermodynamic universality to the dynamic domain,
described by properties such as the self-intermediate
scattering function (self-ISF) FSðk; tÞ or the long-time
self-diffusion coefficient DL. Some implications of this
universality, on the dynamic arrest scenario of soft-sphere
systems, have also been discussed [10]. In these discus-
sions, however, temperature was considered constant, and
hence, its role was never emphasized.
The main purpose of this work is to demonstrate that the

same dynamic equivalence principle becomes a much
deeper and more powerful fundamental tool when con-
ceived as a general dynamic scaling principle in the
density-temperature-softness state space of these glass-
forming soft-sphere liquids. This defines what we refer to
as the hard-sphere dynamic universality class and explains,
in particular, some of the intriguing scalings observed in
the recent simulations on model glass-forming soft-sphere
liquids [4,5].
Let us first refresh the concept of static structural equiva-

lence, now in terms of the radial distribution function
(RDF) gðr; n; T; �Þ of a given soft-sphere model system.
The fundamental physical notion is that this system
behaves essentially as a hard-sphere system in the
sense that gðr; n; T; �Þ � gHSðr=�HS;�HSÞ [6–8], where
gHSðr=�;�Þ is the RDF of the HS system. This isostruc-
turality condition allows one to write the equilibrium
thermodynamic properties of the soft-sphere system, such
as the equation of state p ¼ pðn; T; �Þ, in terms of the
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corresponding properties of the hard-sphere fluid. For ex-
ample, the pressure pðn; T; �Þ can be written, using the
virial equation of state [8], as pðn; T; �Þ=nkBT �
Zðn; T; �Þ � 1þ 4�HSgHSð1þ;�HSÞ � ZHSð�HSÞ. Using
the Verlet-Weis prescription to approximate the contact
value gHSð1þ;�HSÞ turns out to be equivalent to approx-
imating the hard-sphere compressibility factor ZHSð�HSÞ
by the Carnahan-Starling (CS) equation [7], thus finally
leading to the following approximate but universal me-
chanical equation of state of the soft-sphere system,

Zðn; T; �Þ � ZCSð�HSÞ ¼ 1þ�HS þ�2
HS ��3

HS

ð1��HSÞ3
; (1)

with �HS ¼ �HSðn; T; �Þ determined by the isostructural-
ity condition. This universality is nicely illustrated in the
simulation results of Ref. [4] (see inset of Fig. 4).

The dynamic extension of this soft-hard equivalence was
discussed in Refs. [9,10] in the context of the dynamics of
colloidal liquids, in which a short-time self-diffusion co-
efficient D0 describes the diffusion of the colloidal parti-
cles ‘‘between collisions.’’ It is summarized by the
statement that the self-ISF FSðk; t;n; T; �Þ of the fluid

with soft repulsive potential uð�ÞðrÞ can be approximated by

FSðk; t; n; T; �Þ � FðHSÞ
S ðk�HS; D

0t=�2
HS;�HSÞ; (2)

where FðHSÞ
S ðk�;D0t=�2;�Þ is the self-ISF of the fluid of

hard spheres of diameter �, volume fraction �, and (for
simplicity) the same short-time self-diffusion coefficient
D0 as the soft-sphere fluid. As a direct consequence of this
dynamic universality, it follows that the long-time self-
diffusion coefficient DLðn; T; �Þ [ � limt!1hð�rðtÞÞ2i=6t]
of the soft-sphere liquid, normalized as D�ðn; T; �Þ �
DLðn; T; �Þ=D0, is given by

D�ðn; T; �Þ � D�
HS½�HSðn; T; �Þ�; (3)

where D�
HS½�� is the corresponding property of the HS

system. Similarly, let us define the �-relaxation time
��ðk;n; T; �Þ by the condition FSðk; ��Þ ¼ 1=e, which
we normalize as ��ðk�;�; T�; �Þ � k2D0��ðk; n; T; �Þ.
The dynamic equivalence principle above then implies that

��ðk; n; T; �Þ � ��HS½k�HS;�HS�; (4)

with ��HS½k�;�� referring to the HS system.

Some consequences of the universality summarized by
Eq. (2) were illustrated in Refs. [9,10] in the context of the
truncated Lennard-Jones (TLJ) pair potential with tunable

softness, uð�ÞðrÞ ¼ �½ð�=rÞ2� � 2ð�=rÞ� þ 1��ð�� rÞ
(with �ðxÞ being the Heaviside step function), whose state
space is spanned by the volume fraction � ¼ �n�3=6 and
dimensionless temperature T� � kBT=�. In these referen-
ces, however, only the moderate softness limit (� � 1) is
discussed in detail, in which the strong similarity with the
HS potential leads to the additional simplification that

�HSðn; T; �Þ becomes n-independent, and given by the
‘‘blip-function’’ approximation [8,10]. These, however,
are actually unessential restrictions, and to illustrate this
we have performed Brownian dynamics simulations forDL

of a nontruncated and rather long-ranged soft repulsive
potential (representative of highly charged colloids at low
ionic strength), namely, the Yukawa potential uðrÞ=kBT ¼
K exp½�zðr=�� 1Þ�=ðr=�Þ with K ¼ 554 and z ¼ 0:149.
These data are compared in Fig. 1 with the correspond-

ing data for the TLJ system (� ¼ 6), much closer to the HS
limit (� ¼ 1, Ref. [11]), also shown in the figure. For the
three systems we plot 1=D� as a function of � (inset) and
of the effective HS volume fraction �HSðn; T; �Þ, which is
obtained not from the blip-function method [10] but from
the isostructurality condition, written as Sðkmax;n; T; �Þ ¼
SHSðkmax�HS;�HSÞ. This condition requires that the height
of the main peak of the static structure factor of the ‘‘real’’
soft-sphere system and of the effective hard-sphere system
coincide. As observed in the main figure, the data forD� of
the three systems indeed collapse reasonably well when
plotted as a function of �HSðn; T; �Þ. Let us also notice
that the self-consistent generalized Langevin equation
(SCGLE) theory of colloid dynamics [Eqs. (1), (2), and
(5)–(8) of Ref. [12], with kc ¼ 1:35kmax], complemented
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FIG. 1 (color online). Simulated data (solid symbols) and
SCGLE theoretical predictions (solid lines) of the normalized
long-time self-diffusion coefficient D�ðn; T; �Þ, as a function of
� (inset) and as a function of �HSðn; T; �Þ (main figure), for the
repulsive Yukawa fluid (squares), the truncated 6-12 Lennard-
Jones fluid (triangles), and the hard-sphere fluid (circles,
Ref. [11]). The empty diamonds and the asterisks represent,
respectively, the experimental master curve from Fig. 4 of
Ref. [13] for the reduced viscosity (proportional to 1=D�) of
microgel solutions and the data for DLð�Þ of third- and fourth-
generation dendrimer solutions in Fig. 3 of Ref. [18], scaled to
collapse among themselves and with the HS master curve at low
densities.
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with virtually exact liquid-theory approximations for SðkÞ,
provides an excellent first-principles quantitative descrip-
tion of these data without any adjustable parameter (solid
lines of Fig. 1).

In the same figure we have also included some experi-
mental data for the relative low-shear viscosity 	� �
	ðnÞ=	ðn ¼ 0Þ of several microgel soft-sphere solutions
reported in Ref. [13]. These data correspond to samples
with different soft-sphere size and softness which, upon a
linear rescaling of the concentration, collapse onto a mas-
ter curve [Fig. 2(a) of Ref. [13]]. As illustrated in Fig. 1,
such an experimental master curve for 	�ð�Þ coincides
pretty well with our HS simulation data for 1=D�ð�HSÞ,
thus indicating that these samples clearly belong to the
hard-sphere dynamic universality class. One important
question then refers to the conditions under which a system
with arbitrary repulsive interaction will belong to this
dynamic universality class. Our conjecture is that such a
condition is the existence of a distance of closest approach

�min, such that uð�ÞðrÞ � kBT for r � �min, so that
particle-particle overlaps are highly unlikely or forbidden.
Thus, according to this conjecture, systems with ultrasoft
repulsive interactions with finite overlap potential energy

uð�Þð0Þ will not belong to this HS dynamic universality

class if kBT � uð�Þð0Þ. To illustrate this notion, in Fig. 1
we have also included the experimental data for D� of
two low-generation dendrimer solutions, which cannot
be adjusted by our HS universal curve, and whose struc-
tural properties are best described by the Gaussian core
potential [14].

As illustrated in Fig. 1, the SCGLE theory accurately
captures the scaling rules implied by Eqs. (3) and (4). In
reality, most of the work leading to the results presented
here was actually guided by the general qualitative predic-
tions of this theory. For example, from the general mathe-
matical structure of the theory, it is clear that the dynamic
equivalence principle just illustrated implies a far more
general density-temperature-softness scaling, best de-
scribed in terms of the universal isodynamical surfaces in
the ðn; T; �Þ state space. These are defined as the loci of the
points with the same dynamical properties. According to
Eqs. (3) and (4), the isodiffusivity surfaces labeled by the
condition D�ðn; T; �Þ ¼ D�, with D� being a prescribed
constant value, are also iso-�� and iso-�HS surfaces.
Referring to the TLJ model system, in Fig. 2 we plot
the cuts along the plane � ¼ 6 of these isodynamical
surfaces corresponding to D� ¼ 10�1, 10�2, 10�3, and
0.0 [calculated, however, as iso-�HS lines such that
�HSð�; T�; �Þ ¼ 0:494, 0.55, 0.58, and 0.582, respec-
tively]. The correspondence between the labels �HS

and D� was based, for the case of �HS ¼ 0:494 (i.e.,
D� � 10�1), on Löwen’s dynamic freezing criterion
[15], and for the other isodynamical curves on the predic-
tions of the SCGLE theory of colloid dynamics, which
locates the ideal glass transition at �HS ¼ 0:582 [11].

Let us mention that it has recently been discovered [16]
that the SCGLE theory of colloid dynamics can also de-
scribe the long-time dynamics of atomic systems, provided
that the short-time self-diffusion coefficientD0 assumes its

kinetic-theory value D0 ¼ ð ffiffiffiffi

�
p

=16�Þ½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=M
p �. This

suggests the manner in which the density-temperature-
softness scaling and the isodynamical scenario just dis-
cussed may be shared by atomic systems. Notice, however,
that in this caseD0 becomes state dependent, and hence, in
contrast with the Brownian case, we cannot expect that an
iso-�� surface will also be an iso-�� surface. To illustrate
this, in the inset of Fig. 2 we compare a few SCGLE-
predicted iso-�� lines for a soft-sphere fluid with harmonic
repulsive potential uðrÞ ¼ �ð1� r=�Þ2 for r � �, with the
iso-�� lines determined by molecular dynamics simula-
tions by Berthier and Witten [5] for this model system. In
spite of the expected quantitative differences, the theoreti-
cal and simulated scenarios are, however, qualitatively
identical.
Figure 1 provides the first illustration that the results for

D�
HS½�� actually play the role of universal master curves

for all moderately soft-sphere systems, provided that the
horizontal axis is labeled not by the volume fraction � but
by the effective volume fraction �HSð�; T�; �Þ. This scal-
ing, however, can be expressed in alternative manners.
Thus, we can plotD�

HS½�� (or ��HS½k�;��) not as a function
of � but as a function of a combination of �, such
as [�ZCSð�Þ]. The resulting curves will then also be
master curves for all the soft-sphere systems in the HS
dynamic universality class when the horizontal axis is not
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FIG. 2 (color online). State space of the truncated 6-12
Lennard-Jones fluid, showing four isodiffusivity lines, including
the freezing transition (dash-dotted line) and the ideal glass
transition (solid line). In the inset we plot similar isodiffusivity
lines for the soft-sphere system with harmonic repulsive
potential of Ref. [5], together with the simulation results for
the iso-�� lines labeled �� ¼ 101, 102, 103, and 104 in Fig. 1
of Ref. [5].
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the combination [�ZCSð�Þ] but the combination
[�HSð�; T�; �ÞZCSð�HSð�; T�; �ÞÞ].

A very important meaning of the resulting master curves
is suggested by the structure of the equation of state in
Eq. (1), which can also be written in terms of the dimen-
sionless pressure p�

� � ��3p�=6� as

p�
�ð�; T�Þ
3

�ð�; T�Þ
T� ¼ �HSð�; T�; �ÞZCSð�HSð�; T�; �ÞÞ;

(5)

with 
�ð�; T�Þ � �HSð�;T�; �Þ=�. Thus, the combination
[�HSZCSð�HSÞ] is also the combination [p�
3

�=T
�]. In

Fig. 3 we replot the master curve D�
HS½�� of Fig. 1 but

now as a function of this combination. Alternatively, we
can use the combination ½�ZCSð�Þ��1, which changes the
horizontal axis to [T�=p�
3

�]. In the inset of Fig. 3 we
replot the same results for D�

HS½�� as a function of this

combination. The resulting curves in Fig. 3 then constitute
a prediction of the existence of master curves that describe
the universal dependence of D�ð�; T�; �Þ on pressure and
temperature for this class of soft-sphere systems. The
prediction of similar master curves for ��ðk�;�; T�; �Þ
can be drawn from the determination of the results for
��HSðk�;�Þ.

This predicted scaling has actually been corroborated by
the master curve empirically discovered by Xu et al. [4] in
their recent simulations performed on the TLJ soft-sphere
system with � ¼ 6 and on other soft potentials. These
authors found that the simulated results for the
�-relaxation time �� of these soft-sphere systems, com-
puted as a function of temperature T at fixed pressure p, or
as a function of 1=p at fixed T [Figs. 1(a) and 1(b) of
Ref. [4], respectively], all collapse onto a master curve

when plotted as a function of the ratio T=p (Figs. 2 and 3
of [4]). The simplest manner to relate their empirical
scaling with our predictions in Fig. 3 is to scale the raw

data for �� in their Fig. 1 as �� ¼ k2D0��, with D0 ¼
ð ffiffiffiffi

�
p

=16�Þ½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=M
p � and to plot them as a function of

[T�=p�
3
�ðT�Þ]. As a result, the various data of Fig. 1 of Xu

et al. [4] collapse onto the master curve shown here in
Fig. 4, predicted by the dynamic equivalence discussed in
this work, and in agreement with the scaling discovered by
Xu et al. This required us to express � in this expression
for D0 in terms of T� and p�, but this is easily achieved
using the equation of state in Eq. (5); the inset of Fig. 4
compares our theoretical equation of state [Eq. (5)]
with the corresponding simulation data of Ref. [4]. Let us
finally notice that, for the TLJ model, in the low-
temperature regime 
�ð�; T�Þ may be approximated by

the blip-function result [8,10], which yields 
3
�ðT�Þ � 1�

ð3 ffiffiffiffi

�
p

=2�Þ ffiffiffiffiffiffi

T�p
. Thus, at the temperatures employed in the

simulations of Xu et al. (T� < 10�3), the combination
[T�=p�
3

�ðT�Þ] is essentially the temperature-to-pressure
ratio [T�=p�] employed in Ref. [4].
In summary, we have illustrated the accuracy of the

density-temperature-softness scaling of the dynamics of
soft-sphere liquids and shown that it provides a simple
and useful conceptual tool to understand, within a unified
framework, the phenomenology of both thermally-driven
molecular glass formers and density-driven hard-sphere-
like colloidal liquids. There are, of course, important
pending assignments, such as the characterization of the
nonequilibrium dynamics at, and beyond, the glass
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FIG. 4 (color online). Molecular dynamics simulations re-
ported in Figs. 1(a) and 1(b) of Xu et al. [4] for �� of soft-
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transition in this (HS) universality class, or the identifica-
tion of other dynamic universality classes, particularly
those influenced by the presence of attractive interactions.
We expect that the results discussed in this work, together
with the nonequilibrium extension of the SCGLE theory
[17], will facilitate the progress in these directions.
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