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We investigate the quantum-to-classical crossover of a dissipative cavity field by measuring the

correlations between two noninteracting atoms coupled to the cavity mode. First, we note that there is

a time window in which the mode shows a classical behavior, which depends on the cavity decay rate, the

atom-field coupling strength, and the number of atoms. Then, considering the steady state of two atoms

inside the cavity, we note that the entanglement between the atoms disappears while the mean number of

photons of the cavity field ( �n) rises. However, the quantum discord reaches an asymptotic nonzero value

even in the limit of �n ! 1, whether �n is increased coherently or incoherently. Therefore, the cavity mode

always preserves some quantum characteristics in the macroscopic limit, which is revealed by the

quantum discord.
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Although the quantum theory predicts many nonclass-
ical and intriguing phenomena, such as quantum superpo-
sition of states and quantum nonlocality [1,2], such
phenomena can be observed only with difficulty in the
macroscopic world, as classical physics is recovered
from quantum mechanics for large excitation numbers
and many-particle systems [3]. The emergence of classical
physics from quantum mechanics is therefore actively
studied and suggested explanations include decoherence
due to interaction with the environment [4], impossibility
of macroscopic superposition of distinct states [5], and
restrictions due to imprecise measurements [6]. However,
to determine the quantum or classical behavior of a given
system we need to introduce the meter to observe its
properties, which in quantum theory is not a simple task.
The simple interaction of a given system and a meter
modifies its dynamics in such a way that the quantum-to-
classical crossover may depend on the meter involved. For
cavity fields one usually employs a single atom as the
meter for the cavity-field properties, as, for example, in
Refs. [7–9]. In Ref. [8] the quantum-to-classical crossover
was investigated by raising gradually the effective tem-
perature of a circuit QED system. At low temperatures,
vacuum Rabi oscillations and mode splitting were ob-
served, revealing the quantum nature of the light field.
However, these effects disappear when the effective tem-
perature is raised, increasing the mean number of photons
�n of the cavity mode. Naturally, the conditions needed for a
bosonic mode to show a classical behavior depend on the
system parameters and even a cavity mode with a very
small �nmay behave classically [9]. Normally, however, the
increasing of �n destroys its quantum properties, as shown
in Refs. [7,8]. In Ref. [10] the quantumness of an ideal
cavity field interacting with a single ideal two-level atom
was also investigated, showing that the antibunching is still

present for an initial �n up to three photons. However, from
the analytical results in [10], one can see that the anti-
bunching (quantumness) disappears in the limit of macro-
scopic field ( �n ! 1).
Differently from the studies above, here we investigate

the behavior of a dissipative cavity field interacting with N
atoms instead of just one. As in [9], we assume that the
cavity mode is pumped by a classical (external) field that
controls �n. It can be shown that a purely classical field [11]
is not able to generate any kind of correlation between the
atoms, since such fields perform only local operations on
the atoms. On the other hand, the correlations can be
generated only when the cavity mode has some quantum
behavior, owing of the indistinguishability of paths in the
exchange of a photon between the cavity mode and atomic
system. Hence, the presence of any kind of correlations
(quantum [12,13] or classical [14]) between the atoms can
be taken as a sign of the nonclassical (granular) behavior of
a macroscopic cavity field, just as Brownian motion of a
pollen grain is a sign of the behavior of moving particles
composing a macroscopic fluid.
Consider a cavity mode interacting resonantly with

N identical two-level atoms (jgi ¼ ground state, jei ¼
excited state) and simultaneously driven by a resonant
classical field. Such a system is described by the total
Hamiltonian (" ¼ 1)

H ¼ !0

2
Sz þ!ayaþHP þHI; (1)

where ! is the cavity mode frequency and a (ay) its

annihilation (creation) operator; Sz ¼ �N
j¼1�

j
z, !0 ¼ !,

and �j
z ( ¼ jeijhej � jgijhgj) are the atomic transition

frequency and the z-Pauli matrix of atom j, respectively;
HP ¼ "ðaei!Lt þ H:c:Þ describes the pumping field on
the cavity mode, " and !L ¼ ! being the strength and
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frequency of the driving field, respectively; HI ¼
g

ffiffiffiffi
N

p ðaSþ þ H:c:Þ is the interaction Hamiltonian between

the cavity mode and atoms, with Sþ ¼ Sy� ¼ 1ffiffiffi
N

p �N
j¼1�

j
þ,

�j
þ ¼ jeijhgj, and g the atom-field coupling. Writing the

Hamiltonian in a frame rotating at the laser frequency, by
applying the unitary transformationU ¼ exp½�i!tðayaþ
Sz=2Þ�, we have VL ¼ ðg ffiffiffiffi

N
p

Sþaþ "aþ H:c:Þ. The dy-
namics of this system, assuming a leaking cavity, is gov-
erned by the master equation

_� ¼ �i½VL; �� þ �ðnth þ 1ÞL½a��þ �nthL½ay��; (2)

nth being the mean number of thermal photons, � the
dissipation rate of the cavity mode, and L½A�� ¼
ð2A�Ay � AyA�� �AyAÞ. As in [7], we neglect the
atomic decay as the atoms act as a meter to monitor the
behavior of the cavity mode. To observe the action of
the driven cavity field on the atoms, first we apply a
time-independent unitary transformation which consists

of a displacement operation Dð�Þ ¼ e�a
y���a, i.e.,

~� ¼ Dyð�Þ�Dð�Þ. Setting � ¼ �i"=� and T ¼ 0K, we
finally obtain

d~�

dt
¼ �i½HJC þHSC; ~�� þ �L½a�~�; (3)

with HJC ¼ g
ffiffiffiffi
N

p ðaSþ þ H:c:Þ, HSC ¼ ð�Sþ þ H:c:Þ, and
� ¼ g

ffiffiffiffi
N

p
�. We must observe that the chosen value for �

is exactly the amplitude of the asymptotic coherent field of

the cavity mode for " � g
ffiffiffiffi
N

p
. Under this condition we

find, in all the numerical calculations carried out below,
that the cavity field exhibits the statistical properties of a

coherent field [i.e., correlation function gð2Þð0Þ ¼ 1,
Mandel factor Q ¼ 0, and mean number of photons
�n ¼ j�j2]. Looking at the atoms, it is clear from Eq. (3)
that, in this displaced picture, we have two kinds of atomic
dynamics: one governed by a classical field and the other
by a quantum field. Now we proceed to investigate what
happens to the dynamics of the N two-level atoms when
the cavity mode dissipates strongly.

First, we consider the weak coupling limit, such that

� � geff
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nD þ 1

p
, with geff ¼ g

ffiffiffiffi
N

p
and �nD the intracavity

mean number of photons in the displaced representation.
For t � 1=�, we can adiabatically eliminate the field
variables [15], resulting in a reduced master equation for
the atoms, which in the interaction picture is given by

_�a ¼ �i½HSC; �a� þ �effL½S���a; (4)

where �eff ¼ g2N=�.
Note that Eq. (4) describes a set of N atoms driven by a

classical field with an effective Rabi frequency j�j and
interacting with a common effective reservoir with an

effective decay rate �eff . For j�j � �eff , i.e., for " �
g

ffiffiffiffi
N

p
, and for interaction time t � 1=�eff ¼ �=g2N, ac-

cording to Eq. (4) the dynamics of the system will be
governed mainly by a free evolution. Then, as the reduced

master equation above was derived for t � 1=�, we can
see that, for interaction times limited to the time window

1 � �t � �

�eff

¼
�

�

g
ffiffiffiffi
N

p
�
2
; (5)

the master equation can be approximated by _�a ’
�i½HSC; �a�, which represents an atomic system interact-
ing with a classical electromagnetic field (a similar classi-
cal time window is presented in [9]). Preparing the atoms A
and B initially in the separable state �ð0Þ ¼ �A � �B, we
will have �ðtÞ ¼ �AðtÞ � �BðtÞ, clearly showing that the
interaction HamiltonianHSC is unable to generate any kind
of correlation between the atoms. Moreover, if an initial
atomic state is pure, it will remain pure for any time. Thus,
in this case the atomic purity is a good parameter to
validate the semiclassical approximation, since outside
the time window (5) the dynamics of the system is gov-
erned by Eq. (4), where the presence of the effective
dissipative term introduces decoherence into the atomic
system.
Looking within the time window, we see that, for a fixed

g=�, the interaction time for which the semiclassical re-
gime is still valid decreases with 1=N; in words, the bigger
the number of atoms inside the cavity, the smaller is the
time window in which the semiclassical regime is valid. In
Fig. 1(a) we show the atomic purity for 1, 2, and 3 atoms
inside the cavity, for g ¼ 0:01�, " ¼ � (which results in a
maximum mean number of photons �nmax ¼ j"=�j2 ¼ 1)
and with the atoms initially prepared in the excited state jei
and the cavity mode in the vacuum j0i. For atoms initially
prepared in the ground state jgi, the graph is qualitatively
the same. We can see in this figure that the purity of the
system falls quickly when it leaves the time window that
defines the semiclassical regime.
The next step consists in determining the correlations

between two atoms. The measure of total quantum corre-
lations used here is the quantum discord (QD) [12].
Nonzero QD in a bipartite system implies that it is
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FIG. 1 (color online). Evolution in time of (a) atomic purity for
one (full line), two (dashed line), and three (dotted line) atoms
within the cavity and (b) quantum correlations for two atoms:
QD (full line) and EoF (dashed line). We set g ¼ 0:01�, " ¼ �,
and all atoms initially in the excited state jei and the cavity mode
in the vacuum j0i. Inset: start of evolution (expanded).
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impossible to extract all information about one subsystem
without perturbing its complement. In all cases investi-
gated here the reduced density matrix for the atomic sys-
tem �AB in the basis fje; ei; je; gi; jg; ei; jg; gig has an
X structure defined by its elements �12 ¼ �13 ¼ �24 ¼
�34 ¼ 0, with real coherences and �22 ¼ �33. For this class
of density matrix, the QD can be calculated analytically
[16]: QDð�ABÞ ¼ Sð�AÞ � Sð�ABÞ �maxfD1; D2g, where
D1 ¼ P

i¼1;3�iilog2ð �ii

�iiþ�iþ1;iþ1
Þ þ P

i¼2;4�iilog2ð �ii

�iiþ�i�1;i�1
Þ

and D2 ¼ P
i¼0;1ð1þð�1Þi�

2 Þlog2ð1þð�1Þi�
2 Þ, with �2 ¼

ð�11 � �44Þ2 þ 4ðj�23j þ j�14jÞ2. Here Sð�Þ denotes the
von Neumann entropy [17] and �A ¼ TrB�AB. The entan-
glement, a kind of quantum correlation, is computed
through entanglement of formation (EoF) [13]. For an
X-form density matrix the EoF is [16,18]: EoFð�ABÞ¼
��log2��ð1��Þlog2ð1��Þ, with �¼ 1

2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�C2

p
Þ

with C ¼ 2maxf0; j�14j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22�33

p
; j�23j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�11�44
p g

being the concurrence [18]. Although for pure states the
QD is equal to EoF, there are some mixed correlated states
with null entanglement and nonzero quantum discord.

Now, for two atoms initially prepared in the state je; ei,
we see that the EoF is always zero (for initial state je; gi or
jg; gi the EoF is null for long interaction times and almost
zero for very short interaction times), as we see in Fig. 1(b).
Therefore, the EoF is not useful to distinguish the quantum
and classical character of a cavity-field in the steady state
of the system. However, the QD has very small values
within the time window (5), so that the correlations gen-
erated by the cavity field in the atoms are negligible, which
confirms the classical character of the field within this time
window. Moreover, the QD grows continuously until
it reaches a stationary value. This appreciable value
(¼ 1=3) for the QD for an initial state je; ei (or jg; gi)
shows that the quantum correlation between atoms, gen-
erated by interaction of the atoms with the cavity mode, is
significant for long interaction times and reveals the quan-
tum nature of this cavity field. Thus, to determine the
classical or quantum behavior of the field, we calculate
the correlations between atoms in the steady state.

Entanglement and Quantum Discord in the stationary
regime.—Here we analyze the stationary behavior of the
QD and EoF as a function of the ratios g=� and "=�, by
numerical solution of Eq. (2), with nth ¼ 0, without any
approximation, and assuming the cavity mode initially
in the vacuum j0i (the results are the same for any initial
coherent or Fock state). In Figs. 2(a) and 2(b), for initial
atomic state je; gi (or jg; ei), and 2(c) and 2(d), for
initial atomic state jg; gi (or je; ei), we see that EoF always
goes to zero for " � g, being different from zero only for
" � g, i.e., for a small �n. This result seems to confirm the
equivalence principle since, for a very high �n, we expect an
agreement between quantum and semiclassical descrip-
tion, which means no quantum correlations between the
atoms. Surprisingly, the QD is always nonzero, reaching a
significant value in the limit of " � g (QDss ’ 1=8 for the

initial state je; gi and QDss ¼ 1=3 for initial state jg; gi).
This means that the cavity mode is able to generate corre-
lations between the atoms for any finite �n, even for ex-
tremely intense fields. Thus, the cavity mode, which is
quantum by construction, has its quantum character re-
vealed through the QD between the atoms.
The origin of the quantum character is the indistinguish-

ability of paths in the exchange of a photon between atoms
and the cavity mode. When a photon is absorbed from the
field by an atom one generates a superposition of possibil-
ities, either the photon is absorbed by the first atom or is
absorbed by the second one, with these two possibilities
happening simultaneously. One could argue that the origin
of this quantum character could be in the coherence of the
driving field, which generates a coherent field inside the
cavity, as in [19]. However, being this the case, an inco-
herent pumping of photons into the cavity would not gen-
erate correlations between the atoms in the stationary
regime. To analyze this point more carefully, we have
neglected the driving field (i.e., " ¼ 0) and assumed that
the cavity mode is at a finite temperature T, which implies
in an incoherent injection of photons into the cavity.
Assuming that the cavity mode has a strong decay rate,

i.e., � � g
ffiffiffiffi
N

p
, it quickly reaches its steady state (�ss

c ), so
that, for t � 1=�, we can approximate � ’ �ss

c � �a, �a

being the atomic density matrix. With this assumption and
adiabatically eliminating the field variables [15], we obtain
the effective master equation for the atomic system

_�a ¼ �effðnth þ 1ÞL½S���a þ �effnthL½Sþ��a;

which, for nth � 1, simplifies to _�a � �effnthðL½S���a þ
L½Sþ��aÞ. For atoms prepared initially in the state jg; gi,
the atomic steady state will be �ss

a ¼ 1
3 ðj�þi	

h�þj þ j��ih��j þ j�þih�þjÞ, giving us EoF ¼ 0 and
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FIG. 2 (color online). Stationary quantum correlations versus
"=� for initial atomic states je; gi [(a) and (b)] and jg; gi [(c) and
(d)] and cavity mode in the vacuum j0i. The atom-field coupling
was fixed as g ¼ 0:01� (full line), 0:1� (dashed line), and 1:0�
(dotted line).

PRL 107, 153601 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

153601-3



QD ¼ 1=3. For the initial state je; gi, the atomic steady
state will be �ss

a ¼ 1
6 1þ 1

3 j��ih��j, which give us

EoF ¼ 0 and QD ’ 1=8. Here, j�
i ¼ 1=
ffiffiffi
2

p ðje; gi 

jg; eiÞ and j�
i ¼ 1=

ffiffiffi
2

p ðjg; gi 
 je; eiÞ are the Bell states.
For one atom interacting with a cavity mode and in the

limit of large photon numbers, the classical limit derived in
[8] requires nth > ðg=�Þ2. In this limit, the statistical prop-
erties of the field are those of a thermal one. In Fig. 3
we have assumed g ¼ 0:01�, so that nth ¼ 1 is already
much bigger than ðg=�Þ2, and then numerically solved the
Eq. (2). We see that the EoF goes to zero in the steady state
as the temperature rises. However, this does not happen to
the QD, showing us that the cavity mode is still able to
generate quantum correlations between the atoms even
when it is interacting with a thermal reservoir, as we see
in Fig. 3. Taking into account the initial atomic state je; gi
we note that both the QD and the EoF decay as we increase
nth. The EoF goes to zero while the QD reaches the
asymptotic value ’ 1=8, as in the case of a coherent
injection of photons. For the initial atomic state jg; gi we
see that the EoF is always zero and for low temperatures
the QD is negligible. But, increasing nth, the QD increases,
reaching the predicted asymptotic value QDss ¼ 1=3, as
when we have a coherent driving field. In this case, exactly
the same pattern of quantum correlations is obtained for
any value of atom-field coupling. This happens due the
thermalization of the system; i.e., the cavity mode thermal-
izes with the reservoir and the atoms effectively thermalize
with the cavity mode. The atom-field coupling merely
determines the interaction time required for the thermal-
ization of the atoms with the cavity field. Therefore, the
stronger this coupling, the shorter the interaction time
required for the system to reach the stationary state. Thus
we see that the cavity field is always able to generate
correlations, irrespective of the temperature of the reser-
voir, revealing the quantum character of the field at any
temperature.

In conclusion, we have shown that a nonzero QD be-
tween atoms can be taken as a signature of the nonclassical
behavior of the cavity mode. It is important to realize that,

for a high �n, entanglement is not present in the atomic
system, so that the quantum character of the cavity mode
can be revealed by QD. Also, the QD is different from zero
for any value of atom-field coupling and even in the limit of
a very strong driving field or high temperatures. We can
thus affirm that, although the statistical properties of a field
show that by increasing �n in a dissipative cavity mode we
reach the classical limit, the nonzero correlations between
the atoms shows that the quantum character of this field is
still there, even for a macroscopic field. Moreover, there is
a time window during which the mode effectively shows
classical behavior, which depends on the cavity decay rate,
the strength of the atom-field coupling, and the number of
atoms interacting with it.
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FIG. 3 (color online). Stationary quantum correlations versus
nth: QD (full line) and EoF (dashed line). The dotted lines
represent the analytical predictions for QD. We have assumed
atom-field coupling g ¼ 0:01�, initial atomic state (a) je; gi and
(b) jg; gi. In (b), the EoF is zero for all nth.
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