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We present an analytical theory for the nonlinear optical response of a strongly interacting Rydberg gas

under conditions of electromagnetically induced transparency. Simple formulas for the third-order optical

susceptibility are derived and shown to be in excellent agreement with recent experiments. The obtained

expressions reveal strong nonlinearities, which in addition are of highly nonlocal character. This property

together with the enormous strength of the Rydberg-induced nonlinearities is shown to yield a unique

laboratory platform for nonlinear wave phenomena, such as collapse-arrested modulational instabilities in

a self-defocusing medium.
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Advances in designing materials with highly intensity-
dependent refraction [1–3] have ushered in numerous
studies of nonlocal nonlinear wave phenomena [4–8]. In
nonlocal systems, such as nematic liquid crystals [1,2] or
thermal media [3], the nonlinear response depends not only
on the local intensity at a given point but also on the
surrounding intensity profile. While many of these settings
require high power laser light, electromagnetically induced
transparency (EIT) in ultracold multilevel atoms [9,10]
provides an elegant mechanism to suppress photon loss
and simultaneously increase light-matter interaction times
to enhance nonlinear effects. Combined with sufficiently
large nonlinearities, this holds great potential for few-
photon nonlinear optics [11,12] and may enable applica-
tions in communication and quantum information science.

Recently, it was recognized that EIT schemes involving
highly excited atomic Rydberg levels provide promising
perspectives for such applications [13–23]. In particular,
the huge polarizability of Rydberg states gives rise to giant
Kerr coefficients [16] but also entails strong long-range
interactions, which render Rydberg-EIT media intrinsi-
cally nonlinear. Indeed, a recent theory for two-photon
pulses revealed the emergence of strong effective photon-
photon interactions [24], while experiments [21] and nu-
merical calculations [25] demonstrated greatly enhanced
nonlinear absorption coefficients in the opposite limit of
large photon numbers.

In this Letter, we develop an analytical theory for the
nonlinear optical response of a strongly interacting
Rydberg-EIT medium to monochromatic multiphoton light
sources. Based on the approach, we give a simple formula
for the nonlinear absorption coefficient that provides an
excellent description of recent measurements on cold ru-
bidium gases [21]. For large single-photon detunings,
absorption is shown to be greatly suppressed—yet main-
tains huge refractive nonlinearities that exceed previous
records in ultracold Kerr media [10] by several orders of
magnitude. Combined with their long range, this makes for

an ideal nonlinear medium to study nonlocal wave phe-
nomena, in which the strength, the range, and even the sign
of the nonlocal interaction kernel can be widely tuned with
high accuracy. To demonstrate this potential, we present
numerical results for the propagation of cw laser light
and show that paradigm phenomena, such as optical
solitons [4,5] and modulational instabilities [6] [see
Fig. 1(c)], are observable with current experimental
capabilities.
Consider first the propagation of a beam with wave

number k and amplitude Ep that couples to the atomic

medium with a Rabi frequency �p ¼ }12Ep=@ [see

Fig. 1(a)], as described by the paraxial wave equation

FIG. 1 (color online). (a) Three-level scheme for isolated
atoms, where the atomic ground state j1i, an intermediate state
j2i, and a highly excited Rydberg state j3i are mutually driven by
a strong control and a weak probe field with Rabi frequencies�c

and �p, respectively. (b) In a gas of atoms, the strong van der

Waals interaction between atoms in state j3i inhibits multiple
Rydberg excitations within a blockade radius Rc, giving rise to a
strongly nonlinear optical response of the medium. The resulting
nonlinear beam propagation, for example, leads to modulation
instabilities, as shown in (c) for a rubidium 70S1=2 Rydberg gas

with a density of 8� 1013 cm�3 and �p=2� ¼ 0:35 MHz,

�c=2� ¼ 80 MHz, and �=2� ¼ 1:2 GHz.
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where r? accounts for the transverse dynamics with re-
spect to the axial coordinate r? ¼ ðx; yÞ perpendicular to
the propagation direction z. The relevant medium proper-
ties are contained in the complex susceptibility

� ¼ �R þ i�I ¼ 2}2
12

@�0�p

�12; (2)

which is determined by the dipole matrix element }12 of
the probe transition and the corresponding atomic coher-
ence density �12. The probe field �p drives the lower

transition between the ground state j1i and a low-lying
excited state j2i of ladder-type three-level atoms [see
Fig. 1(a)], whose optical response is controlled by a strong
control field, driving the upper transition between j2i and a
Rydberg state j3iwith a Rabi frequency�c >�p. Without

interactions, this yields a perfect EIT medium, in which
each of the N atoms in the gas settles into a dark state
jdii / �cj1ii ��pðriÞj3ii (i ¼ 1; . . . ; N) such that �12 ¼
� ¼ 0 and the probe beam is unaffected by the atomic
medium [9]. In the presence of strong Rydberg-Rydberg
atom interactions, the population dynamics becomes
highly correlated due to the resulting level shifts of multi-
ply excited Rydberg states. Within a critical blockade
radius Rc, all but a single Rydberg excitation are inhibited
[26] [see Fig. 1(b)] and removed from two-photon reso-
nance, thereby diminishing EIT and, thus, giving rise to
nonlocal absorption and refraction within a range �Rc.
Since the Rydberg state population in the unperturbed dark
states jdii is proportional to �pðriÞ2, one, hence, expects
an intensity-dependent, i.e., nonlinear, optical response.

Having established a simple picture of the basic mecha-
nisms, we now derive the resulting optical susceptibility
from the underlying Heisenberg equations for the atomic

transition operators �̂ðiÞ
�� ¼ j�iih�ij (�;� ¼ 1; 2; 3).

Because of the low temperature, one can assume a ‘‘frozen
Rydberg gas’’ [14,20,21], with fixed atomic positions ri
[27]. In the limit of low probe intensities [�pðriÞ � �c],

these can be expanded in �p=�c [30]. Upon adiabatic

elimination of �̂ðiÞ
12, one obtains a single dynamical equa-

tion for the two-photon transition operator of the ith atom:

d

dt
�̂ðiÞ

13 ¼ ��c

�pðriÞ1þ�c�̂
ðiÞ
13

2�
� �13

2
�̂ðiÞ

13

� i
X
j�i

Vij�̂
ðjÞ
33�̂

ðiÞ
13; (3)

where 1 is the identity operator, �̂ðiÞ
33 ¼ �̂ðiÞ

31�̂
ðiÞ
13, � ¼ �12 �

i�, and�=2 is the single-photon detuning. The rates �1j ¼
�j þ ��1j denote the linewidth of the probe and two-photon

transition, accounting for spontaneous decay of the inter-
mediate state (�2) and the Rydberg state (�3) as well as the

laser bandwidths ��12 and ��13 of the respective transition.
The last term in Eq. (3) describes the interactions between
Rydberg atoms, and Vij ¼ C6=jri � rjj6 is the correspond-
ing van der Waals potential [31]. Since the van der Waals
coefficient C6 / n11 drastically increases with the atom’s
principal quantum number n, the interaction between
Rydberg atoms exceeds that of the two low-lying states
by many orders of magnitude. Proper inclusion of the
resulting strong atomic correlations requires knowledge

of the two-body correlators �̂ðjÞ
���̂

ðiÞ
�0�0 whose dynamics

follows from Eq. (3) by applying the chain rule. Being
primarily interested in the leading-order nonlinear contri-
bution to �, we can once more expand the resulting two-
body equations to leading order in �p. This amounts to

dropping direct three-body correlators and, thus, yields a
closed set of evolution equations for the one- and two-body

operators. By setting d
dt h�̂ðiÞ

��i ¼ d
dt h�̂ðjÞ

���̂
ðiÞ
�0�0 i ¼ 0, the

steady state expectation values are then readily obtained
from the resulting set of algebraic equations. Finally, we
take the continuum limit by defining continuous densities

���ðrÞ ¼
P

ih�̂ðiÞ
��i	ðr� riÞ and obtain

�12ðrÞ ¼
i�13�pðrÞ
�2

c þ �13�
�� �pðrÞ�4

c

ð�2
c � �13�Þj�2

c þ �13�j2
�2

�
Z

dr0
2j�pðr0Þj2Vðr� r0Þ

�2
c þ �13�þ i�Vðr� r0Þ ; (4)

where � ¼ P
i	ðr� riÞ is the total atomic density.

Together with Eq. (2), this yields the leading-order non-
linear susceptibility and permits one to propagate the probe
beam according to Eq. (1).
If the atoms are driven on single-photon resonance

� ¼ 0, the main interaction effect will be nonlinear ab-
sorption. Hence, one can neglect the transverse beam
dynamics (r2

?) as well as the nonlocality in Eq. (4), by

setting �2
pðr0Þ � �2

pðrÞ. With this simplification, one ob-

tains local first- and third-order susceptibilities, defined by

�ðrÞ ¼ �ð1Þ þ �ð3Þ�2
pðrÞ. The remaining spatial integral in

Eq. (4) can be carried out analytically to give

�ð1Þ
R ¼ 0; �ð1Þ

I ¼ 6��2�13

k3ð�13�12 þ�2
cÞ
�;

�ð3Þ
R ¼ � 4

ffiffiffi
2

p
�3�2�

4
cC6jC6j�1=2

k3
ffiffiffiffiffiffiffi
�12

p ½�13�12 þ�2
c�7=2

�2; �ð3Þ
I ¼ j�ð3Þ

R j:

(5)

This expression permits a simple interpretation, by intro-
ducing the resonant blockade radius ~Rc, defined by the
distance at which the interaction jC6j= ~R6

c exceeds the

width ~	EIT ¼ �2
c=�12 of the EIT window [24]. Assuming

�13 � ~	EIT and substituting C6 by ~Rc ¼ ðjC6j= ~	EITÞ1=6,
one finds that �2

p�
ð3Þ
I ¼ ð�= ffiffiffi

2
p Þfbl�2lv is proportional
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to the corresponding two-level response �ð2lvÞ ¼
6���2=ðk3�12Þ times the fraction fbl ¼ �2

p

�2
c

4�
3
~R3
c� of

blockaded Rydberg excitations, which is consistent with
the simple picture outlined above and the numerical find-
ings of Ref. [25].

Experimentally, nonlinear absorption has been recently
studied in a cold rubidium gas involving j3i ¼ j60S1=2i
Rydberg states [21]. In the experiments the transmission T

of a Gaussian probe beam (�p ¼ �p0e
�r2?=w

2

) through the

gas of length l was measured for different intensities and
atomic densities. Within the local approximation, this con-
figuration permits a simple solution of Eq. (1) for the
integrated beam transmission:

T ¼ T0

lnð1þ pÞ
p

; (6)

where p ¼ �2
p0�

ð3Þ
I ð1� T0Þ=�ð1Þ

I and T0 ¼ e�k�ð1Þl is the

first-order transmission. Figure 2 shows a comparison to
the measured transmission for two different densities and
demonstrates good agreement, even for rather large probe
Rabi frequencies of up to �p0 � 0:3�c. Note that the

backaction of the nonlinear beam attenuation onto suscep-
tibility and, equally important, the averaging over the
transverse beam profile are both essential for a proper
description of the experiment. Neglecting these effects
yields the dashed lines in Fig. 2, which significantly over-
estimate the nonlinear absorption.

Since on resonance �ð3Þ
I ¼ j�ð3Þ

R j [cf. Eq. (5)], large non-
linear refraction is inevitably accompanied by high photon
loss. However, for large single-photon detunings � � �2,

Eq. (4) yields �I � ð�2=�Þ�ð3Þ
R , such that dissipative loss

can be greatly suppressed. For instance, for a rubidium
Rydberg gas with �c=2� ¼ 5 MHz, �p=2� ¼ 0:5 MHz,

� ¼ 30 GHz, and � ¼ 8� 1013 cm�3, one obtains a large
absorption length of labs � 1 mm and yet a high nonlinear
refractive index n2 � 2� 104 cm2=W, which is 5 orders
of magnitude greater than previously obtained with ultra-
cold Rb ground state atoms at the same density [10].
As refraction starts to dominate absorption, the non-

locality of �ð3Þ [cf. Eq. (4)] becomes significant. To ac-
count for its effects on the transverse beam propagation, we
recast Eqs. (2) and (4) into

�ðrÞ ¼ � 12��2�
2

k3��2
c

Z
dr0

j�pðr0?; zÞj2
1þ jr0�rj6

R6
c

� i
�2

�

j�pðr0?; zÞj2
½1þ jr0�rj6

R6
c
�2 ; (7)

where we assumed �12 � �2 and �13 � 	EIT ¼ �2
c=�

and introduced the off-resonant blockade radius Rc ¼
ðC6=	EITÞ1=6 (C6�> 0) [24] set by the off-resonant EIT
width 	EIT. To simplify matters, we proceed by defining
scaled coordinates 
 ¼ z=ðkR2

cÞ and � ¼ r?=Rc and the
dimensionless probe amplitude �, normalized toR
�2ð�; 
Þd2� ¼ 1. By retaining the local approximation

along the propagation direction [33], this yields a two-
dimensional nonlinear Schrödinger equation:

i@
�ð�;
Þ¼
�
�r2

�

2
þ�

Z
d�0j�ð�0;
Þj2U1ð���0Þ

� i
�2

�
�
Z
d�0j�ð�0;
Þj2U2ð���0Þ

�
�ð�;
Þ;

(8)

where � ¼ 36�2�2�2
2
Pp

@k4cR3
c�

4
c
C6 parametrizes the strength of

the nonlinearity, Pp denotes the probe beam power,

and the effective interaction potentials Umð�Þ ¼R1
�1 dz½1þ ð�2 þ z2Þ3��m are shown in Fig. 3(a). As
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FIG. 2 (color online). Nonlinear transmission of a cold rubid-
ium Rydberg-EIT medium with j3i ¼ j60S1=2i at two different

densities and control Rabi frequencies and for ��12=2� ¼
110 kHz and �13=2� ¼ 220 kHz [21]. Up to �p0 � 0:3�c,

there is good agreement between our low-�p prediction Eqs.

(5) and (6) (solid line) and the experimental data [21,37] (sym-
bols). The dashed lines neglect the drop in absorption due to
attenuation and averaging over the initial transverse beam
profile.

FIG. 3 (color online). (a) Effective photon-photon interaction
potentials, introduced in Eq. (8). (b) Growth rate �MI of intensity
modulations with wave number k for defocusing nonlinearities
of different strengths �2�. The dashed lines show the corre-
sponding imaginary part, while the solid lines correspond to the
real part of �MI. The critical value of �

2�MI ¼ 50:06 marks the
onset of a modulational instability within a narrow window of
wave numbers indicated by the gray shaded area for �2� ¼ 80.
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� / C6, repulsive atomic interactions lead to self-
defocusing nonlinearities, while attractive atomic interac-
tions map onto self-focusing nonlinearities.

The former case can, e.g., be realized with cold Rb
(nS1=2) Rydberg states as in the experiments [21] discussed

above. While the resulting photon-photon interactions are
isotropically repulsive, the corresponding momentum
space interaction ~U1ðkÞ is not sign-definite. Despite being
defocusing, the present nonlocal interaction can,
consequently, promote a modulational instability (MI).

In Fig. 3(b), we show the corresponding rate �MIðkÞ ¼
� k

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4��2 ~U1ðkÞ

q
[6] for a given mode with wave

number k to grow out of a homogenous amplitude�ð�Þ ¼
const. This growth rate �MI assumes real values within a
narrow range around k � 2� at a critical interaction
strength ��2 � 50 [34], resulting in stable transverse
intensity modulations on a length scale �Rc as the beam
propagates through the medium [cf. Fig. 1(c)]. To examine
their observability, we performed numerical simulations of
Eq. (8) for a Rbð70S1=2Þ Rydberg gas traversed by a super-
Gaussian beam � ¼ �0e

�ð�=wÞ�þi with � ¼ 6 and small
spatial phase noise . Figure 4 shows calculated output
intensity profiles for different atomic densities and dem-
onstrates that highly localized, rather regular intensity
patterns can be realized in high density gases with feasible
laser parameters.

Self-focusing nonlinearities arise from attractive
Rydberg interactions, as occurring between n1S0 states of
strontium atoms [35], for which EIT has been recently
observed [15]. In this case, modulational instabilities can,
in principle, occur for any �< 0 and sufficiently large
beam widths. More importantly, however, the attractive
photonic soft-core interaction enables the formation of
stable bright solitons, leading to tight beam focusing. A
simple variational analysis of Eq. (8) (see, e.g., [36]) yields
a critical interaction strength of �so � 0:71, above which
stable bright solitons exist. Figures 5(a) and 5(b) show two
examples for a Srð501S0Þ gas and reveal a characteristic

soliton size & Rc. In addition, we show final intensity
profiles for a Gaussian (� ¼ 2) and super-Gaussian
(� ¼ 6) input beam. All cases are for an input width of
w ¼ 3Rc and demonstrate significant focusing after the
considered propagation length l ¼ 240 �m. In the latter
case, the beam compression is superimposed by a radial MI
leading to a ring-shaped hollow output beam. With a
typical size of several micrometers, these structures are
readily observable experimentally.
In conclusion, we have presented a theory for the non-

linear response of a strongly interacting Rydberg-EIT gas,
giving good agreement with recent measurements. The
derived expressions for the third-order susceptibility sug-
gest that huge nonlinearities of highly nonlocal character
can be experimentally realized, which provides an ideal
setting to study complex nonlinear wave phenomena. To
demonstrate these prospects, we have shown that the ob-
servation of basic effects such as the formation of bright
solitons and collapse-arrested modulational instabilities
are within experimental reach. The latter is particularly
interesting in the uncommon case of defocusing, nonlocal
nonlinearities. Here, the repulsion between emerging in-
tensity peaks combined with transverse beam confinement
may promote the formation of transverse supersolid or
crystalline states of photons. This question may be ad-
dressed within the present approach, extended to quantum
light in order to account for atom-photon and photon-
photon correlations, which would open up a general frame-
work for studying many-body physics with strongly inter-
acting photons. From a different perspective, the discussed
nonlinear light propagation may be generally relevant for
interpreting cold Rydberg gas experiments at high
densities.

FIG. 4 (color online). Output beam profile j�ðr?Þj2 for
�p0=2� ¼ 0:35 MHz, �c=2� ¼ 80 MHz, and �=2� ¼
1:2 GHz after propagation over l ¼ 210 �m through a
Rbð70S1=2Þ EIT medium at three different densities

(a) 4� 1013 cm�3, (b) 5:5�1013 cm�3, and (c) 8�1013 cm�3.
For the color coding each distribution has been normalized by
the actual maximum intensity j�maxj2.

FIG. 5 (color online). Intensity profiles j�ðr?Þj2 for a
Srð501S0Þ EIT medium with �p0=2� ¼ 0:3 MHz, �c=2� ¼
15 MHz, and �=2� ¼ 3:2 GHz at two different densities of
(a),(c),(e) 8� 1011 cm�3 and (b),(d),(f) 1:2� 1012 cm�3. (a),
(b) show the stable soliton solutions, while (c)–(f) show the
compressed output intensity profile after a propagation length
l ¼ 240 �m for an input beam with (c),(d) � ¼ 2 and (e),(f)
� ¼ 6. The color coding is identical to Fig. 4.
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