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We examine baryonic matter at a quark chemical potential of the order of the confinement scale

�q ��QCD. In this regime, quarks are supposed to be confined but baryons are close to the ‘‘tightly

packed limit’’ where they nearly overlap in configuration space. We show that this system will exhibit a

percolation phase transition when varied in the number of colors Nc: at highNc, large distance correlations

at the quark level are possible even if the quarks are essentially confined. At low Nc, this does not happen.

We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new ‘‘phase

transition,’’ varying Nc at constant �q.
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Long ago, it was suggested to describe the deconfine-
ment phase transition via percolation [1–7]. The idea is
that, at increasing energies, the high parton density will
make partons of different hadrons overlap. It is natural to
associate this transition to deconfinement, where a quark
can propagate throughout the hot medium rather than being
confined to the hadron size���1

QCD � 1 fm in natural units

[8]. Currently, we believe that the transition to quark-gluon
plasma at low density is a crossover, casting doubt on the
relevance of percolation (a phase transition, generally of
second order) in those conditions.

In this work we use the percolation picture to study a
different but related region in the phase diagram, the one at
low to moderate temperature 0 � T � �QCD and high

quark chemical potential �q ��QCD. Strongly interacting

matter in this regime has recently received a considerable
amount of interest. Such matter can hopefully be produced
in heavy-ion collisions [9–12], and is thought to exhibit a
rich phenomenology, such as a critical point [13], spinodal
instabilities [14], separation between chiral symmetry
and confinement [15–18], chirally inhomogeneous phases
[19–21], new phases [22], etc.

These conjectures are, however, extraordinarily difficult
to explore quantitatively in a rigorous manner. The
quark chemical potential�q is nowhere near the asymptotic

freedom limit where perturbative QCD can be used
[8]. It is, however, way too high for existing lattice-based
approaches, dependent on �q=T � 1, to work [23–25].

Hence, a simple geometric picture such as percolation
might help. Its physical relevance is demonstrated in
Fig. 1, schematically showing the regime where
�q ��QCD. At this chemical potential the density is

naively expected to be �Oð1Þ�3
QCD, that is, one baryon

per baryonic size. In configuration space, this means bary-
ons touch each other; i.e., their quarks are separated by a
scale not much larger than the confinement scale. We there-
fore expect some weakly coupled features of QCD be

present due to the small interquark distance.
Nonperturbative features, on the other hand, should also
be present since baryons are still confined. The interplay of
all these features could be very physically interesting. Such
a setup was recently investigated in [22] using the only
relevant quantity that can be called ‘‘a small parameter’’:
1=Nc, withNc number of colors [26]. The idea is to keep the
quantity � ¼ g2Nc [where g is the SUðNÞ Yang-Mills cou-
pling constant [8] ] fixed, sending the number of colors Nc

to infinity, and then expanding in 1=Nc. It is easy to see that
the running of � is qualitatively Nc independent, hence
�QCD � N0

c . Obviously, such a setup can give at best a

qualitative agreement at Nc ¼ 3, but it might be enough
to understand the phase diagram structure of the system.
In this setup each quark-quark interaction is weak
(� �=Nc) but, due to combinatorics, baryons remain
strongly coupled ‘‘semiclassical’’ objects [27]. Looking at
Fig. 1 with a large-Nc perspective, one can immediately see
that quarks may be arbitrarily close together in configura-

tion space (interquark distance�N�1=3
c ), so interactions of

quarks between neighboring baryons could be weakly
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FIG. 1 (color online). The structure, in configuration space, of
dense baryonic matter. Comparison of the top and the bottom
panels shows that the percolation picture is applicable: when the
exchange probability goes above the threshold pc the size of
the typical cluster diverges. The figure also shows a definition of
the interquark distance y of Eq. (3).
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coupled. Confinement, however, persists until quark-hole

screening� gluon antiscreening [22], �q � N1=2
c �QCD.

How can a confined system be, at the same time, asymp-
totically free? The authors of [22] conjectured that excita-
tions below the Fermi surface behave as asymptotically
free quarks, but excitations close to the Fermi surface are
confined. Thus, the entropy of such a system is �Nc

(unlike N0
c for confined matter), but dynamical excitations

are baryons and mesons and the Polyakov loop expectation
value [8] is �0. This new ‘‘quarkyonic’’ state of matter
[22] might be realized in our Nc ¼ 3 world.

The problem is that it is difficult to model this phase
theoretically in a rigorous way. While quarkyonic matter
has been claimed to be found in the Polyakov-Nambu-
Jona-Lasinio (pNJL) model [18], one cannot reliably in-
vestigate whether this phase has pressure �Nc in that
model, since the pressure in pNJL is always somewhat
�Nc, since the ‘‘Polyakov loop field’’ as implemented in
[15,16,18] is different from ‘‘true’’ confinement. Similarly,
it is difficult to see how holographic methods [28] can
verify such a conjecture, since there �N�1

c plays the role
of the string coupling constant gs (� is the compactification
scale of the remaining 5 dimensions in units of Planck
length); in a semiclassical gravity regime, such as [29],
pressure in a confined phase is always�N0

c [30,31]. Taking
these difficulties into account, it is not clear how applicable
is the large Nc limit to our Nc ¼ 3 world. Nuclear matter
seems to look very different in that world compared to
ours, as it is a tightly bound crystal of baryons [27,32,33]
(unless what we call large-Nc matter is actually the quar-
kyonic phase). Mean field analysis show a considerable Nc

variation between Nc ¼ 3 and 10>Nc > 3 [34]. In [35] a
physical interpretation of these structures was conjectured:
due to the Pauli exclusion principle, an interplay exists
between the number of colors Nc and the number of
neighbors NN . Hence, a ‘‘phase transition’’ exists in Nc

space when the baryon density is ��3
QCD, separating our

world (Nc � NN) from the truly large-Nc world. In this
Letter, we aim to apply standard percolation knowledge to
investigate this further.

The key insight suggesting that interesting structures
might be lurking in Nc is that 3D bond percolation exhibits
a phase transition at comparatively low critical link proba-
bility: for instance, pc � 0:25, 0.18, 0.12 for simple-cubic
(schematically shown in Fig. 1), body-centered-cubic, and
hexagonal-close-packed lattice, respectively [36]. Such
values suggest that long-distance correlations on the quark
level could occur even with a somewhat low percentage of
quarks hopping between baryons, i.e., firmly in the con-
fined phase. While below pc the characteristic correlation
distance � (� cluster size) is ���1

QCD, above the threshold

this quantity explodes to the total system size in a compa-
rable amount of time. We leave the meaning of ‘‘correla-
tion’’ vague, as it can be either a quark hop or a gluon
exchange; in our context, it implies exchange of color

degrees of freedom within a confined tightly packed
medium. We encode the likelihood of exchange between
neighboring baryons in a link probability p, to be com-
pared with the percolation threshold pc in order to assess
the formation of large-scale structures.
Two baryons will be correlated if at least two quarks are

correlated. One has to sum over all possible multiquark
configurations, resulting in a strong Nc dependence of p.
We determine the latter by calculating the probability
q ¼ 1� p that no exchanges happen between neighboring
baryons. We define pð1Þ;ij as the probability that quarks i

and j, respectively, in baryons A and B ‘‘correlate’’ (either
by flip or gluon exchange). Assuming the quarks inside the
nucleon are uncorrelated (Fermi motion dominates), this
probability factorizes into a geometric distribution fA;BðxÞ
for quarks to be at a certain (vector) position x (see Fig. 1),
and a ‘‘squared propagator’’ transition amplitude FðdÞ
for them:

p ¼ 1� ðqð1Þ;ijÞðNcÞ� ;

qð1Þ;ij ¼
Z

fAðxiÞdxi

Z
fBðxjÞdxjð1� Fðjxi � xjjÞÞ:

(1)

We assume a ‘‘hard-sphere’’ distribution for fA;B (since we

keep�q fixed, the distance between centers of neighboring

baryons is always 2��1
QCD, Fig. 1):

fA;BðxÞ / �ð1��QCDjx� xcenter
A;B jÞ (2)

and a probability of exchange i $ j based on a range of
‘‘reasonable’’ propagators, compatible with confinement
(fast fallout in configuration space at distances greater
than rT � 1 in units of ��1

QCD) and with the large Nc limit

of QCD, the interaction is �g2 � �=Nc [26,27]. The
propagators we use are the simple � function in configu-
ration space and the momentum-space � function used in
[19], all normalized so their area is �rT=Nc. In configura-
tion space the transition amplitudes are, respectively,

FðyÞ ¼ �

Nc

8>>>><
>>>>:

�

�
1� y�QCD

rT

�
;

2r2T
�y2

sin2
�
y�QCD

rT

�
:

(3)

Other transition amplitudes, such as a Gaussian distribu-
tion in configuration space, were also tried with no signifi-
cant modifications of the results presented below.
We note that, due to the fact that 3D percolation has a

second-order phase transition at a certain pc < 1, the re-
sults we obtain below have some degree of universality: as
long as the qualitative features of confinement are observed
[the transition amplitude FðyÞ drops sharply above the
scale rT , and the hadron density profile fA;BðxÞ has a

central plateau of radius ���1
QCD and a sharply decreasing

tail outside], the results we show vary quantitatively but not
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qualitatively, in particular, in regard to phase transition
behavior if p� pc for some critical Nc. Mathematically,
this model is similar to the Glauber model, familiar in
heavy-ion collisions [8], with the number of colors playing
the role of the number of participants Npart. Just as in the

Glauber model the dependence on Npart is universal with

respect to cross sections, in this case the dependence on Nc

is universal with respect to the shape of the transition
amplitude.

The crucial parameter left is � in Eq. (1). Here, we shall
consider two limits: one can assume that the link of quark i
from baryon A to quark j of baryon B does not prejudice in
any way the possibility of also linking i-k, with quark k
again in baryon B. This scenario, natural if the link is
actually realized by a gluon exchange rather than a quark
flip, means that � ¼ 2. If, on the other hand, the link is
given by a quark exchange, then, on a short enough time
step, the probability of a quark moving more than once is
negligible. In this case, � ¼ 1.

Physically one expects that at Nc � 1 gluon exchange
dominates over quark flip, by combinatorics alone. Indeed,
one can easily see that � ¼ 1 is in contradiction with the
Skyrme crystal picture at large Nc: in this picture, pðNcÞ
approaches a constant large-Nc value from above: low Nc

nuclear matter would be more correlated (and hence more
strongly bound) than high Nc nuclear matter. Comparing
strongly coupled Nc ! 1 nuclear matter [27] to the
weakly bound nuclear liquid at Nc ¼ 3 [35], this is obvi-
ously not right. We therefore assume � ¼ 2 henceforward.
A closer inspection of the � ¼ 2 case reveals that it is an
approximation of

p ¼ 1�
Z YNc

‘¼1

fAðxðAÞ
‘ ÞdxðAÞ

‘

�
Z

fBðxðBÞ
m ÞY

Nc

m1

dxðBÞ
m

Y
i;j

ð1� FðjxðAÞ
i � xðBÞ

j jÞÞ; (4)

where we integrate over all quark positions in the two
baryons and write the probability of no exchanges taking
place as the product of the individual no-exchanges prob-
abilities for N2

c A-B pairs. Numerical integration shows the
effect of correlations to be a �3% correction, so that the
qualitative outcome of the analysis is unaffected.
In the large Nc limit for the case � ¼ 2, p asymptoti-

cally approaches unity. It is reasonable that this is the point
where the ‘‘dense baryonic matter as a Skyrme crystal,’’
theorized in [22,27,32,33], is reached. If this is the case,
however, one should remember that a percolation second-
order phase transition occurs at a pc � 1. Hence, keeping
�q ��QCD fixed but varying Nc, the features of the

Skyrme crystal should manifest not with a continuous
approach, rather as a second-order transition at a not too
high Nc, whose order parameter can be thought to be the
‘‘giant cluster’’ density. Below the critical Nc there is little
correlation between quarks of different baryons, while
above this threshold they can correlate, with the distance
boundary given only by causality. We reiterate that this is

not deconfinement since ���QCD � N1=2
c �QCD inde-

pendently of the number of colors, and the fraction of
correlated quarks from different hadrons is still
�0:1–0:3 � 1 at the percolation transition. Right above
this transition, therefore, the baryonic wave function
should not be too different from the large-Nc baryonic
wave function described in [27]. The correlation distance
of quarks will, however, be much larger than the baryon
size. The features of this new phase are therefore similar to
those of the quarkyonic matter [22].
Assuming the lowest 3D value pc ¼ 0:12, appropriate

for a closely packed hexagonal lattice, the critical number
of colors is shown in Fig. 2 as a function of � and rT . As
can be seen, the critical number of colors is significantly
larger than 3 for rT ���1

QCD, �� 1. However, given the

roughness of our model, a critical Nc � 3 cannot be ex-
cluded at �q ��QCD, provided quarks can correlate
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FIG. 2 (color online). Contour plot of the critical Nc for the percolation transition in a hexagonally packed lattice as a function of the
coupling � and range rT (in �QCD units). The left panel assumes a �-function correlation probability in configuration space, the right

panel assumes a correlation probability based on the propagator used in [19]. Diagram covers 2 � Nc � 80.
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significantly above the confinement length (� 1:5��1
QCD) or

the coupling constant is significantly larger than unity (one
has to remember, however, that these quantities are not
independent: �QCD is defined as the scale at which �

becomes ‘‘strong,’’ �1, and it is generally assumed that
confinement is set by that scale).

Considering Fig. 2 is a lower limit since pc is at its
minimum (pc is significantly higher both in a Skyrme
cubic crystal and in a disordered fluid), we can say that
Nc ¼ 3 is disfavored, although it cannot be excluded.
Changing temperature and �q should further change the

criticalNc. Exploring this parameter space, and seeing how
it relates to the confinement phase transition, is the subject
of a forthcoming work.

What are the phenomenological consequences of perco-
lation? If by correlation we mean energy-momentum-
exchange via quark tunneling between baryons, it is
reasonable that pressure and entropy density �Nc above
the percolation threshold, while below it they stay �N0

c .
This is because above the threshold, where interbaryon
tunneling is significant, ‘‘typical’’ excitations of the
Fermi surface will be superpositions across baryons of
baryon-localized quark-hole excitations, similar to con-
duction band electrons in a metal; while the localized
excitation energy � �QCD, the superposition makes its

energy ��QCD even if color degeneracy remains. Thus,

the degrees of freedom of the system above percolation
will be delocalized weakly interacting quarks in a lattice of
confining potentials, a picture compatible with [20,22].
Below the threshold, where tunneling is negligible, exci-
tations are either color singlets or of energy E � �QCD,

suppressed below deconfinement.
The only known rigorous way to access these phe-

nomena quantitatively is the lattice. Current quenched
simulations show that Nc dependence is surprisingly
smooth [37,38]. Our considerations suggest that this will
not be true at finite chemical potential. While chemical
potentials accessible to current numerical studies are far
smaller than dense-packing densities [23–25], approaches
such as the strong coupling expansion [39] could be used to
probe the large-Nc dependence at these densities.

This transition might also be visible with holographic
techniques beyond the supergravity limit, since finite �N�1

c

corresponds, in gauge-string duality, to gs [28]. Thus,
percolation will manifest itself as a transition from
‘‘stringy weak coupling’’ to ‘‘not-so-weak coupling.’’
While there are hints [40,41] that percolation is relevant
for corrections beyond classical gravity, exploring this is
beyond the scope of this work. The fact that percolation
appears only as a subleading factor of gs might explain
why, despite the reasonableness of the argument in [22] for
s� Nc in the quarkyonic phase, s� N0

c in the confined
phase in all semiclassical AdS/CFT setups to date.

In conclusion, we have used a toy model, with uni-
versal features, to investigate the close-packed regime

(�q ��QCD) of baryons at variable Nc. Our findings sug-

gest that, if baryons are kept in this regime butNc is varied,
a percolation-type phase transition occurs at some critical
Nc �Oð10Þ, probably but not certainly higher than 3. This
transition is quite distinct from deconfinement as the per-
centage of quarks propagating on superbaryonic distances
is quite low. Nevertheless, the typical correlation length
will be much larger than ��1

QCD. Further work needs to be

done to explore the phenomenological consequences of
this transition, but our findings suggest that applying the
Nc ! 1 limit to dense baryonic systems should be done
with caution, since a discontinuity might be present be-
tween Nc ¼ 3 and Nc ! 1.
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