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An interaction quench in a Luttinger liquid can drive it into an athermal steady state. We analyze the

effects on such an out of equilibrium state of a mode coupling term due to a periodic potential. Employing

a perturbative renormalization group approach we show that even when the periodic potential is an

irrelevant perturbation in equilibrium, it has important consequences on the athermal steady state as it

generates a temperature as well as a dissipation and hence a finite lifetime for the bosonic modes.
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The high degree of tunability and control associated
with cold-atomic gases make them an exciting test bed
for studying a host of phenomena related to interacting
quantum particles [1]. Among the topics of great current
interest are the nonequilibrium physics of quantum
quenches for which these systems are particularly well
adapted (see [2] and references therein) and other classes
of steady state nonequilibrium phenomena such as systems
subjected to a time dependent noise [3].

Crucial questions in all these out of equilibrium phe-
nomena is the relaxation mechanism by which the system
reaches a steady state and the properties of the steady state,
in particular, whether the latter is athermal or thermal and
hence described by a Gibbs distribution. In the case of a
quench where nontrivial time evolution is triggered after a
sudden change in system parameters, many models mainly
in one-dimension [4] and involving simple effective theo-
ries [5,6], are found to reach an athermal steady state
characterized by a generalized Gibbs ensemble (GGE).
However the generality of the GGE remains under debate
since certain observables do not obey it [5,7–10]. More
generally, the relaxation mechanism and the nature of the
steady state in more complicated field theories, as well as
the role of a finite system size in numerical studies, are still
largely unknown [11,12].

It is thus important to have theoretical models for which
such nonequilibrium questions can be reliably studied. One
good candidate for such an analysis is a one dimensional
system of interacting bosons, leading to the so called
Luttinger liquid physics [13]. The excitations of such a
system can be represented by density modes which are
essentially independent. On such a system, quenches cor-
responding to a change of the interaction reveal a steady
state which still has independent modes, but these are now
characterized by a nonequilibrium distribution that does
not relax to a thermal state [5].

In this paper we examine the effect of a mode coupling
term on the above system, where the mode coupling is
due to an externally imposed optical lattice. We address

explicitly the question of thermalization and asymptotic
relaxation of such a system. We use the Keldysh technique
[14] and a controlled renormalization analysis and show
that even in cases for which the lattice potential would be
irrelevant in equilibrium, it leads for the out of equilibrium
situation to the appearance of finite dissipation, as well as a
finite temperature for the low energy modes. We thus
explicitly obtain a mechanism, which we argue should be
generic, in which thermalization and dissipation arises due
to the transfer of energy from the long wavelength modes
to the short wavelength modes, the latter thus acting as
a bath.
We consider interacting one dimensional bosons in the

continuum. The low energy properties of such a system can
be efficiently represented by a Luttinger liquid [13]

Hi ¼ u0
2�

Z
dx

�
K0½��ðxÞ�2 þ 1

K0

½@x�ðxÞ�2
�

(1)

where � is related to the long wavelength part of the
density by �ðxÞ ¼ �r�ðxÞ=�, while� is the canonically
conjugate variable to �. The eigenmodes of the
Hamiltonian are the sound waves of density with a disper-
sion ! ¼ u0q. The information about the interactions is
contained in the two Luttinger parameters u0 the velocity
of density oscillations, and K0 a dimensionless parameter
controlling the decay of correlation functions.
The bosons are driven out of equilibrium via a sudden

interaction quench which for the effective Luttinger liquid
theory, simply implies a sudden change of the Luttinger
parameter from K0 ! K, and the velocity from u0 ! u. To
satisfy Galilean invariance we choose u ¼ vF=K and u0 ¼
vF=K0. The time evolution of the initial state is therefore
due to Hf ¼ HiðK0 ! K; u0 ! uÞ.
We first give here the full solution for a quench K0 ! K

with arbitrary interactions. In the Keldysh formalism [14]

it is convenient to define classical [�cl ¼ ð�� þ�þÞ=
ffiffiffi
2

p
]

and quantum [�q ¼ ð�� ��þÞ=
ffiffiffi
2

p
] fields where ��ðþÞ

are the time (antitime) ordered fields on the Keldysh

PRL 107, 150602 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

0031-9007=11=107(15)=150602(5) 150602-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.150602


contour. In terms of these fields, the action that describes
the steady state behavior at long times (tþ t0 ! 1) after
the quench when transients related to oscillations of

e�iujqjðtþt0Þ have averaged out to zero, is

S0 ¼ 1

�Ku

X
q�0;!

��
cl ��

q

� �

�
0 ð!� i�Þ2 � u2q2

ð!þ i�Þ2 � u2q2 4ij!j� K0

2K

�
1þ K2

K2
0

�
0
B@

1
CA �cl

�q

 !
:

(2)

Equation (2) implies that the retarded propagator
�ih�cl�

�
qi ¼ GRðq;!Þ ¼ �Ku

ð!þi�Þ2�u2q2
is identical to that

in the ground state of Hf, while the Keldysh propagator

GK ¼ �ih�cl�
�
cli which is sensitive to the occupation of

the bosonic modes is,

GKðq;!Þ ¼ K0

2K

�
1þ K2

K2
0

�
sgnð!Þ½GR �GA�: (3)

Thus the fluctuation-dissipation theorem (FDT) defined by
GK ¼ ðGR �GAÞ cothð!=2TÞ, where T is the temperature
of the bosons, is violated. WhenK ¼ K0, FDT is recovered

as cothð!=2TÞ ���!T¼0
signð!Þ. Note that although the system

is now out of equilibrium, each q mode is still infinitely
long lived since � ¼ 0þ.

S0 can be used to evaluate the basic two-point
correlation functions corresponding to the density fluctua-

tion CK
�� and response CR

��, defined as CK
��ðr; tÞ ¼

�iRe½e�ð�2=2Þh½��ðr;tÞ��þð0;0Þ�2i� and CR
��ðr; tÞ ¼ i�ðtÞ�

Im½e�ð�2=2Þh½��ðr;tÞ��þð0;0Þ�2i�. Defining Keq ¼ �2

4 K, Kneq ¼
�2

8 K0ðK2=K2
0 þ 1Þ, we find,

e�ð�2=2Þh½��ðr;tÞ��þð0;0Þ�2i

¼ e�ðKneq=2Þ lnð½�2þðutþrÞ2�=�2Þ�ðKneq=2Þ lnð½�2þðut�rÞ2�=�2Þ

� ei½Keqtan
�1½ðutþrÞ=��þKeqtan

�1½ðut�rÞ=���; (4)

where � is a short distance cutoff, and � is an arbitrary
coefficient which will later be related to the periodicity of
an externally imposed lattice potential. In equilibrium
Keq ¼ Kneq, and one recovers the usual power-law decay

of Luttinger liquids. However out of equilibrium one finds
power-law behavior with new decay exponents Kneq. For

the case of K0 ¼ 1 this power-law decay was obtained in
[5], and can also be recovered using a GGE that accounts
for the conservation of the occupation number of appro-
priate bosonic modes. Since Kneq >Keq, the propagators

always decay faster than in equilibrium.
The role played by the oscillating terms in Eq. (4) which

differentiates between response and correlation functions
has not been explored before, and will play an important
role in the RG. Its importance can already be seen at this

level by studying the FDT ratio defined by
CK
��

ðq;!Þ
2 Im½CR

��
ðq;!Þ� .

While for Keq ¼ Kneq this ratio reduces to the equilibrium

T ¼ 0 result of signð!Þ, out of equilibrium it can be used to
formally define a !, jqj dependent effective ‘‘tempera-
ture.’’ In the limit! ! 0, q ! 0, the effective temperature
�T defined as

CK
��ðq ¼ 0; ! ¼ 0Þ

2 Im½CR
��ðq ¼ 0; ! ! 0Þ� ¼ 2 �T

!
(5)

and therefore assumed to be �T > ! is,

�T ¼ Kneq � 2

2Keq

; (6)

where the energy-scales are expressed in units of u=�, and
length scales in units of �. The behavior ofCKðq ¼ 0:5; !Þ
and 2 Im½CR

��ðq ¼ 0:5; !Þ� are plotted in Fig. 1 for the

equilibrium case when Keq ¼ Kneq ¼ 2 and the nonequi-

librium case of Keq ¼ 2, Kneq ¼ 3. Note that this tempera-

ture is dependent on the correlation function we use,
contrary to the case of equilibrium for which each ratio
between response and fluctuation defines the same tem-
perature. Figure 1 shows that besides the appearance of an
effective temperature, a striking effect is the appearance of
a dissipation characterized by a nonzero slope of Im½CR� /
�i�!. As we shall show below, the temperature and the
dissipation already apparent at this stage will reappear in
the RG analysis.
We now study how this nonequilibrium state is modified

by a coupling between modes. Although in principle any
form of nonlinear coupling, such as, for example, a �4

term can be used, we focus here on the case of a cosð��Þ
perturbation. There are two reasons for such a choice: (i) if
the phase � represents real interacting bosons, the
Hamiltonian cannot contain perturbations coupled directly
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FIG. 1 (color online). CKðq¼0:5;!Þ and 2Im½CRðq¼0:5;!Þ�
in equilibrium Keq ¼ Kneq ¼ 2:0 and after a quench Keq ¼ 2,

Kneq ¼ 3.
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to � but only to derivative or periodic functions of �;
(ii) such a periodic term arises naturally when a periodic
potential is added on the system. It is the source of the Mott
transition in one dimension [13], and thus very natural to
study in that context. As for the case of equilibrium we
study this term by a renormalization group (RG) proce-
dure, since the rest of the Keldysh action S0 is quadratic.

The Keldysh path integral is ZK ¼ R
D½�cl; �q�eiðS0þSsgÞ

where

Ssg ¼ gu

�2

Z
dx

Z
dt½cosð���Þ � cosð��þÞ�: (7)

Writing such an action assumes that after the quench has
long taken place, one switches on the cosine term infinitely
slowly. Without the quench the system would thus relax to
the ground state (at T ¼ 0) in the presence of the cosine
term. To which state the system will tend if the initial state
is not in equilibrium is the very question we address here.
In order to perform an RG analysis, we split the modes
between slow and fast components �cl;qðxtÞ ¼ �<

cl;qðxtÞ þ
�>

cl;qðxtÞ where

�<
cl;qðxtÞ ¼

Z 1

�1
d!

2�

Z �0

��0

dq

2�
eiqx�i!t�q;clðq;!Þ

�>
cl;qðxtÞ ¼

Z 1

�1
d!

2�

Z
�>jqj>�0

dq

2�
eiqx�i!t�q;clðq;!Þ

(8)

and �=�0 ¼ edðlnlÞ, and integrate out the fast modes. Care
has to be taken to regularize the two-point functions ap-
propriately, and no cutoff on time should be imposed. We
choose here a standard momentum cutoff [13], the details
of the computation will be given elsewhere.

The first step of RG generates a correction to Ssg as well

as corrections to S0 which may be absorbed into a redefi-
nition of K and u. However when K � K0, additional
terms of the form

�S ¼
Z

dR
Z

dðutÞ 1

�K

�
�2

�

u

�
�

�0

�
�q@ut�cl

þ i
4Teff�

u2
K0

2K

�
1þ K2

K2
0

��
�

�0

�
2
�2

q

�
(9)

are generated. These corrections can be summarized in the
following RG equations,

dg

d lnl
¼
�
2� �2

8
K0ð1þ K2=K2

0Þ
�
g; (10)

dK�1

d lnl
¼ �g2

4�4

�
�2

2

�
2 K0

2

�
1þ K2

K2
0

�
IK; (11)

1

Ku

du

d lnl
¼ �g2

4�4

�
�2

2

�
2 K0

2

�
1þ K2

K2
0

�
Iu; (12)

d�

d lnl
¼ �þ �g2uK

2�4

�
�2

2

�
2 K0

2

�
1þ K2

K2
0

�
I�; (13)

dðTeff�Þ
d lnl

¼ 2Teff�þ �g2u2K2

4�4

�
�2

2

�
2
IT; (14)

where IT ¼ R1
�1 dr

R1
�1 dtRe½e�ð�2=2Þh½��ðt;rÞ��þð0;0Þ�2iF�,

I�¼
R1
�1dr

R1
�1dttIm½e�ð�2=2Þh½��ðt;rÞ��þð0;0Þ�2iF�, IK=u¼R1

�1dr
R1
0 dtðr2� t2ÞIm½e�ð�2=2Þh½��ðt;rÞ��þð0;0Þ�2iF� and

F ¼ 1
2 ðei�ðtþrÞ þ ei�ðt�rÞÞ þ i

2 ðKeq

Kneq
� 1Þfsin½�ðt þ rÞ� þ

sin½�ðt � rÞ�g.
Equation (10) reflects the new scaling dimension of the

operator ei�� due to the change in the decay exponent from
Keq to Kneq. It still defines two regimes, one in which the

cosine is irrelevant, and one for which the perturbative RG
would lead to strong coupling for the cosine term. In
equilibrium this would reflect the Berezinski-Kosterlitz-
Thouless transition corresponding to the Mott transition
(K ¼ 2 and infinitesimal g). Equation (11) is the usual
scaling of K, which is reduced by the presence of the
cosine term. This equation is also slightly modified
compared to the equilibrium one when Keq � Kneq.

Equation (12) is a renormalization of the velocity. It ap-
pears here because we took a pure momentum cutoff which
thus does not respect the Lorentz invariance. It would
appear also in equilibrium with the same cutoff structure.
These three equations would thus lead to two separate
phases, one in which the cosine is irrelevant, and a strong
coupling regime whose physics would be beyond the reach
of the perturbative RG. In order to stay in the regime for
which the RG is reliable even asymptotically we concen-
trate here on the case Keq, Kneq > 2 for which the cosine

term is irrelevant according to Eq. (10). Other regimes of
the phase diagram will be discussed elsewhere. In this
regime one could naively expect to recover the same
physics as without the cosine [namely the athermal state
corresponding to Eq. (2)]. However, the two remaining
Eqs. (13) and (14) introduce qualitatively new physics
and lead to quite a different state.
Equation (13) shows that contrary to the case of an

equilibrium quantum system, for which the friction coef-
ficient remains always infinitesimal (� ¼ 0þ), even at
finite temperature, here because of the combination of
the cosine term and the initial out of equilibrium action,
a finite friction is generated. If one starts from the equilib-
rium situation K ¼ K0 then of course IT;� ¼ 0 and one

recovers the conventional results. The finite friction causes
a crossover of the mode dispersion at low energies from a
pure quantum behavior, dominated by ð@t�Þ2 ! !2�2, to
a more classical one �@t� ! i�!�, and the correlation
functions will reflect this. Interestingly, the physics of
dissipation can also be recovered in a quench involving
fermions [15]. Similar to the case studied here, an initial
quench on a system of noninteracting fermions can cause it
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to reach a nonequilibrium steady state characterized by a
highly broadened distribution function. As a result, switch-
ing on infinitesimal interactions (which can be treated
within the random phase approximation) can cause effi-
cient scattering and an enhanced particle-hole continuum
which leads to a damping of collective modes, at least for
attractive interactions between fermions.

In addition to the generation of the friction, Eq. (14)
shows that a constant term (in the limit ! ! 0) is added to
the Keldysh part of the action. In this limit and in equilib-

rium, this term would simply be / !� coth!
2T
���!!¼0

2T�.

Thus the constant term together with the appearance of a
finite friction can be interpreted as a finite temperature, at
least for small enough frequencies. One thus recovers at
small frequencies the action (so called Martin-Siggia-Rose
action) of a classical system with a finite friction and a
thermal noise. Note that because we have shown that the
full action renormalizes to a quadratic one, and that the
Keldysh term tends to a constant, the temperature as de-
fined above is indeed the one that will appear in all �
correlations, at least asymptotically for low frequencies,
contrary to the case of (2). Therefore the nonlinear cou-
pling of the modes leads to a thermalization of the system.
The full frequency dependence of such a noise is however
quite complicated leading to an interesting crossover, de-
pending on the frequency scale, between the athermal
distribution and the classical, finite temperature one at
low frequencies. In particular the RG flow itself has been
derived from the quantum athermal correlations. The cor-
rections generated by the RG will thus change significantly
at a scale for which !2 ¼ �ð!Þ!. Since at this scale the
system enters in a more classical regimewith exponentially
decaying correlation functions (see below), this regime
will not change the fact that the cosine is irrelevant, and
will simply slightly modify the final values of the friction
and temperature.

Figure 2 shows the solution for the renormalized �
for two different g and K0 ¼ 3. The nonmonotonic behav-
ior arises because the larger is K the more rapidly g

renormalizes to zero leading to a smaller renormalized �.
While at the other end, when K ¼ K0, � ¼ 0. These two
behaviors have to go through a maxima. Quite naturally the
friction is proportional to g2. This is however not the case
for the temperature Teff which for small g is found to reach
the following value independent of g (where we have set
F ¼ 1 in the RG equations)

T�
eff ¼

K�
neq � 2

2K�
neq

(15)

While as Kneq ! Keq, �, �Teff ! 0, Teff is nonzero. This

is because the order of limits ! ! 0, Keq ! Kneq do

not commute. Further T�
effK

�
neq=K

�
eq ’ �T, and hence is

consistent with the noninteracting estimate for the tem-
perature (6).
Let us finally compute the correlations at the thermal

fixed point where the action is (dropping !2 terms in
comparison to !�)

S� ¼ X
q;!

��
cl ��

q

� � 1

�K�u

�
0 �i��!� u2q2

i��!� u2q2 4iT�
eff�

� K0

2K�

�
1þ K�2

K2
0

�0
@

1
A �cl

�q

� �

(16)

The above implies that equal-time two-point correlation
functions decay exponentially in position,

hei�clðxÞe�i�clðyÞi ’ e�ðK�
neq=K

�
eqÞT�

eff
ð�K�=uÞjx�yj (17)

while the dissipation affects unequal-time correlation func-

tions GRðq; tÞ ¼ ��ðtÞð�K�u=��Þe�u2q2t=��
, GKðq; tÞ ¼

�ð2�iK�
uq2

ÞðT�
eff
K�
neq

K�
eq

Þe�u2q2jtj=��
. Thus in an experiment involv-

ing a one dimensional Bose gas in a periodic potential [1],
a probe of the density-density response function which
directly correspond to the correlators hei��e�i��i, should
reveal the dissipative and thermal effects we predict.
In summary, by studying the particular example of a

quenched Luttinger liquid in the presence of a lattice, we
have found a mechanism, that we believe is generic by
which a nonequilibrium system in the presence of mode
coupling will both thermalize and acquire a finite friction
or lifetime for the modes. It is important to note that these
effects are related to the presence of a continuum of
excitations in the system by which local degrees of free-
dom can relax and exchange energy. By this argument it is
possible that thermalization might not occur in the Mott
insulator phase, and the fact that Teff vanishes near the
critical point, might be a prelude to this physics. An
investigation of this issue and also how the results depend
upon the rapidity with which the cosine potential is
switched on, are important open questions left for future
studies.
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FIG. 2 (color online). Strength of the dissipation � for K0 ¼ 3,
� ¼ 2 and g ¼ 0:05 and g ¼ 0:1.
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