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For a given pure state of a composite quantum system we analyze the product of its projections onto a

set of locally orthogonal separable pure states. We derive a bound for this product analogous to the

entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states

and it allows us to construct a family of entanglement measures, we shall call collectibility. As these

quantities are experimentally accessible, the approach advocated contributes to the task of experimental

quantification of quantum entanglement, while for a three-qubit system it is capable to identify the

genuine three-party entanglement.
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The phenomenon of quantum entanglement—nonclass-
ical correlations between individual subsystems—is a sub-
ject of intense research interest [1–3]. Several criteria of
detecting entanglement are known [2,3], and some of them
can be implemented experimentally (see [4] for the review
of specific experimental schemes). In particular, the issue
of qualitative entanglement detection is quite well estab-
lished including the entanglement witnesses method (see
[3]) and local uncertainty relations [5]. On the other hand,
although various measures of quantum entanglement are
analyzed [3,6], in general they are more difficult to quan-
titatively measure in a physical experiment. To estimate
experimentally the degree of entanglement of a given
quantum state, one usually relies [7] on quantum tomog-
raphy or analogous techniques.

The idea of entanglement detection and estimation with-
out prior tomography [8,9] involves the collective mea-
surement of two (or more) copies of the state as
demonstrated in [10]. Consequently, recent attempts to-
wards experimental quantification of entanglement are
based on finding collectively measurable quantities which
bound known entanglement measures from below and are
experimentally accessible [11,12] (for review, see [13]).

The main aim of this work is to construct a family of
indicators, designed to quantify the entanglement of a pure
state of an arbitrary composite system, which can be
measured in a coincidence experiment without attempting
a complete reconstruction of the quantum state.

Our approach, which leads to a simple collective entan-
glement test, is inspired by the entropic uncertainty rela-
tions which are satisfied by any pure state. For instance, the
sum of the Shannon entropies of the expansion coefficients
of a given pure state jc i 2 H N expanded in two mutually
unbiased bases is bounded from below by lnN [14]. This
observation suggests to quantify the pure states’ entangle-
ment by a function of the projections of the analyzed state

j�i of a composite system onto mutually orthogonal sepa-
rable pure states.
The method we propose can be formulated in a rather

general case of a normalized pure state, h�j�i ¼ 1, of a
composite system consisting of K subsystems. For sim-
plicity we shall assume here that all their dimensions
are equal, so we consider an element of a K-partite
Hilbert space H ¼ H A �H B � � � � �H K, where
dimðH AÞ ¼ � � � ¼ dimðH KÞ ¼ N. Let us select a set of
N separable pure states of a K-qudit system, j�sep

j i ¼
jaAj i � � � � � jaKj i, where jaIji 2 H I with j ¼ 1; . . . ; N

and I ¼ A; . . . ; K. The key assumption is that all local
states are mutually orthogonal, so that

jaI1i; . . . ; jaINi 2 H I; haIjjaIki ¼ �jk: (1)

Entanglement detection.—In order to construct measur-
able indicators of quantum entanglement and find practical
entanglement criteria valid for any analyzed state j�i, we
define now the following quantity:

Ymax½j�i� ¼ max
j�sepi

YN
j¼1

jh�j�sep
j ij2: (2)

This product of the projections of the state onto the set ofN
separable states, optimized over all possible sets of mu-
tually locally orthogonal states, j�sepi¼ fj�sep

1 i; . . . ;j�sep
N ig,

will be called maximal collectibility.
Note the difference with respect to the geometric mea-

sure of entanglement [15], to define which one takes the
maximum over a single separable state, j�sep

1 i. In this case

this maximum, denoted in [15] by�2
max, is equal to unity if

the analyzed state j�i is separable and it is smaller for any
entangled state, so to define the geometric measure of
entanglement one takes 1��2

max. In contrast, taking in
(2) the maximum of the product of the projections of j�i
onto N � 2 separable states j�sep

j i, we face an inverse
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situation: we show below that Ymax is the largest for
maximally entangled states, so this quantity can serve
directly as a quantificator of entanglement.

To this end we shall start with a variational equation

�

�j�i
�YN
j¼1

jh�j�sep
j ij2 � �h�j�i

�
¼ 0; (3)

where � plays the role of a Lagrange multiplier associated
with the normalization constraint. This idea was developed
by Deutsch in order to obtain the entropic uncertainty
relation [16]. Equation (3) implies

YN
j¼1

jh�j�sep
j ij2 XN

i¼1

ðh�sep
i j�iÞ�1h�sep

i j ¼ �h�j: (4)

Multiplying (4) by j�i we find out that � ¼
N
Q

N
j¼1 jh�j�sep

j ij2. Moreover, the contraction of (4) with

j�sep
m i leads to jh�j�sep

m ij2 ¼ 1=N for all values ofm. From
this result we have

max
j�i

YN
j¼1

jh�j�sep
j ij2 ¼ YN

j¼1

1

N
¼ N�N; (5)

which after formal optimization over j�sepi implies the
desired inequality

Ymax½j�i� � N�N: (6)

Using an auxiliary variable, Zmax ¼ � lnYmax, this relation
takes the from Zmax½�� � N lnN, analogous to the en-
tropic uncertainty relation. Interestingly, for a bipartite
system this inequality is saturated for the maximally
entangled state, j�þi ¼ 1ffiffiffi

N
p P

iji; ii, while in the case of

the K-qudit system it is saturated for a generalized
Greenberger-Horne-Zeilinger (GHZ) state, jGHZiK ¼
1ffiffiffi
N

p P
ijiiA � � � � � jiiK.

Consider now the other limiting case of a separable state
j�sepi ¼ j�Ai � � � � � j�Ki. In this case the projections

factorize,

h�sepj�sep
j i ¼ YK

I¼A

h�IjaIji: (7)

Furthermore, for each value of the index (I ¼ A; . . . ; K) we
can independently apply the result (5) and obtain

YN
j¼1

jh�IjaIjij2 � N�N: (8)

Thus, for any separable state we have

YN
j¼1

jh�sepj�sep
j ij2 � YK

I¼A

max
j�Ii

YN
j¼1

jh�IjaIjij2 ¼ N�NK; (9)

so that

Ymax½j�sepi� � N�NK: (10)

This observation leads to the following separability criteria
based on the maximal collectibility:

ðYmax½j�i�>�K;NÞ ) ðj�i � entangledÞ: (11)

Here �K;N ¼ N�NK is the discrimination parameter.

Multiqubit systems.—In the definition (2) of the maximal
collectibility, one performs a maximization over the set of
all N mutually orthogonal separable states j�sep

j i. The

maximal collectibility Ymax can be considered as a pure
state entanglement measure, and we derive below its ex-
plicit expression in the simplest case of a two-qubit system.
However, it is also convenient to perform the optimization
procedure stepwise and to consider first an optimization
over a single Hilbert subspace.
Let us then define a one-step maximum over the local

states belonging to the first subspace H A,

Ya½j�i� ¼ max
jaAi

YN
j¼1

jh�j�sep
j ij2: (12)

Note that the collectibility Ya, a function of the analyzed
state j�i, is parametrized by the set a of N product states
jaBj i � � � � � jaKj i, with j ¼ 1; . . . ; N. By construction one

has maxaYa½j�i� ¼ Ymax½j�i�.
Consider now the case of a K-qubit system (N ¼ 2).

Writing an equation analogous to (3) and following the
standard variational approach, we obtain an analytical
formula for the collectibility,

Ya½j�i� ¼ 1

4
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11G22

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11G22 � jG12j2

q
Þ2; (13)

expressed in terms of elements of the Gram matrix defined
for a set of projected states. Here Gjk ¼ h’jj’ki, while
j’ji 2 H A denotes the state j�i projected onto the jth

separable state living in K � 1 subspaces labeled by
B; . . . ; K, so that j’ji ¼ ½haBj j � � � � � haKj j�j�i.
Because of (5) and (9) the collectibility Ya satisfies the

same uncertainty relations (6) and (10) as the maximal
collectibility Ymax. This approach can be generalized to
the case of Hilbert spaces with different dimensions. It can
be especially useful when dimðH AÞ is much larger
than the dimensions of remaining Hilbert spaces. This
case may for instance describe the entanglement with an
environment.
Two qubits.—Let us now investigate in more detail the

simplest case of a two-qubit system for which K ¼ N ¼ 2
and H ¼ H A �H B. Any pure state j�iAB can then be
written in its Schmidt form [2],

j�iAB ¼ ðUA �UBÞ
�
cos

�
c

2

�
j00i þ sin

�
c

2

�
j11i

�
; (14)

where UA �UB is a local unitary. The Schmidt angle c 2
½0; �� is equal to zero for the separable state and to �=2
for the maximally entangled state. From the uncertainty
relation (6) we know that Ya½j�iAB� � 1=4. Moreover, if
the state (14) is separable, we have (10) Ya½j�sepi��1=16.
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Now we assume the general form of the orthonormal
detector basis spanned in the second subspace H B,

jaB1 i ¼ cos

�
�

2

�
j0i þ e{� sin

�
�

2

�
j1i;

jaB2 i ¼ sin

�
�

2

�
j0i � e{� cos

�
�

2

�
j1i;

(15)

where � 2 ½0; �� and� 2 ½0; 2��. Because of this general
form, our analysis becomes independent of the local uni-
tary UB in (14). Note also that the expression (13) is
independent of UA; thus, our approach works universally
for any two-qubit pure state. Using (15) we shall calculate
the entries of the Gram matrix and find

Y�ðc Þ ¼ ½2 sinðc Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2 cosð2�Þcos2ðc Þ � cosð2c Þp �2

64
:

The collectibility Y�ðc Þ depends on the analyzed state (c )
and the detector parameters a ¼ ð�;�Þ. The dependence
on the azimuthal angle � is trivial. If the state (14) is
maximally entangled (c ¼ �=2) then Y�ð�=2Þ ¼ 1=4
and the collectibility attains its maximal possible value
independently of the choice of ð�;�Þ.

In order to characterize various possibilities to detect the
entanglement, we analyze four quantities. Consider first
the minimal Ymin ¼ min�Y� ¼ Y0 and the maximal
Ymax ¼ max�Y� ¼ Y�=2 values of the collectibility Y�ðc Þ
with respect to the detector parameters ð�;�Þ,

Yminðc Þ ¼ sin2ðc Þ
4

; Ymaxðc Þ ¼ ½1þ sinðc Þ�2
16

:

Then define the mean collectibility �Y ¼ hYaia, averaged
over the set of the detector parameters a ¼ ð�;�Þ with the
measure d� ¼ sinð�Þd�d�=ð4�Þ. This case, correspond-
ing to the average over a random choice of the detector
parameters, �Yðc Þ ¼ R

S2 d�Y�ðc Þ, yields the result
�Yðc Þ ¼ 11� 7 cosð2c Þ þ 3ð�� 2c Þ tanðc Þ

96
: (16)

Furthermore, we study the probability that the entangle-
ment is detected in a measurement with a random choice
of the detector angle �, PYðc Þ ¼ R

P d�, where P ¼
fð�;�Þ 2 S2:Y�ðc Þ> 1=16g:

PYðc Þ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2sinðc Þ�sin2ðc Þ
p

jcosðc Þj for c 2½0;�6�[½5�6 ;��
1 for c 2½�6 ;5�6 �:

(17)

Analytical results for a pure state of the 2� 2 system are
presented in Fig. 1. In the case of the optimal choice of the
detector parameters (solid red curve) the entanglement is
detected for any entangled state. More importantly, in the
case of the worst possible choice of the measurement
parameters represented by the dotted blue curve, the
entanglement is detected for c 2 ½�=6; 5�=6�. This
coincides with the fact that the probability of entanglement
detection with a single random measurement is equal to

unity [cf. (18) and the dashed black curve]. The average
collectibility �Y corresponds to an average obtained by a
sequence of measurements with a random choice of the
detector parameters. Looking at the expression (13), we see
that to compute the collectibility Ya it is enough to deter-
mine the elements of the Grammatrix. Assume first that we
analyze a two-photon polarization-entangled state. The
diagonal element Gjj represents an amplitude of the state

j’ji in the first subspace H A, under the assumption that

the second photon was measured by the detector in the
state jaBj i. To determine the absolute value of the off-

diagonal element, jG12j2 ¼ jh’1j’2ij2, of the two-photon
state j�iAB, one projects theH B part of the first copy onto
the state jaB1 i, the same part of the second copy onto jaB2 i,
and performs a kind of the Hong-Ou-Mandel interference
experiment [17] with the remaining two photons of the first
subsystem H A. A specific scheme of this kind is depicted
in Fig. 2.

6 2
5
6

2
33

0.4

0.2

0.2

0.4

0.6

0.8

1

FIG. 1 (color online). Parameters describing entanglement of a
two-qubit pure state j�iAB as a function of the Schmidt angle c .
We plot the minimal (dotted blue curve), the average (dash-
dotted green curve), and the maximal (solid red curve) values of
the rescaled collectibility ½16Y�ðc Þ � 1�=3. Positive values iden-
tify entanglement. The dashed black line shows the probability
PY that the entanglement of j�iAB is detected in a particular
random measurement.

FIG. 2. Determination of the Gram matrix via conditional
overlapping in the case of two polarization-entangled photon
pairs. Each source produces a pair of photons in a polarization
state j�iAB. On the left-hand side B the statistics of pairs of
clicks after two PBS elements are measured. On the right-hand
side A the Hong-Ou-Mandel interference is performed. The
number jG12j2 is equal to the probability of the pair of the clicks
at B multiplied by that of double click at A.
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Apart from two sources of pure entanglement (which
may base on type-I parametric down-conversion sources
modified by dumping one of the polarization components),
it involves the 50:50 beam splitter (BS), two polarization
rotators Ryð�;�Þ in the same setting, and the polarized
beam splitters (PBS). If by pijðþ;þÞ we denote the proba-
bility of double click after the beam splitter, and by p1i �
p1ðð�1Þiþ1Þ [p2i � p2ðð�1Þiþ1Þ] the probability of click
in the D1;ith detector (D2;ith detector), i.e., one of the

detectors located after upper PBS (lower PBS), then all
the Gram matrix elements are

jGijj2 ¼ p1ip2jð1� 2pijðþ;þÞÞ: (18)

Alternatively one can apply the following network de-
signed to measure all three quantities (see Fig. 3).
Measuring the �z component of the first qubit, con-
ditioned by a pair of the results (i; j) [coming with prob-
abilities p1ðð�1Þiþ1Þ, p2ðð�1Þjþ1Þ] of the measurements
of the same (�z) observable on the last two qubits
one gets an estimation of the parameter jGijj2 ¼
p1ðð�1Þiþ1Þp2ðð�1Þjþ1Þh�ziij.

Without going into detailed analysis here we only men-
tion that the purity assumption may be dropped at the price
of performing two variants of the experiment each with one
of two complementary (in Heisenberg sense) settings
Ryð�;�Þ; Ryð�0; �0Þ. Then the discrimination parameter
�K;N ¼ �2;2 ¼ 1=16 in the inequality (11) may be success-

fully corrected by the term involving the impurities (mea-
sured by Hong-Ou-Mandel interference) of the states
generated by measurements of the two observables [18].

Three qubits.—Now let us investigate the case of a three-
qubit state (K ¼ 3). In this case the separability discrimi-
nation parameter is equal to �3;2 ¼ 1=64. We compare a

biseparable state jBSi ¼ j�iAB � j�iC and two of the
most important representatives, the GHZ state and the W
state,

jGHZi ¼ j000i þ j111iffiffiffi
2

p ;

jWi ¼ j001i þ j010i þ j100iffiffiffi
3

p :

Numerical results for the collectibility are compared in
Table I. We can see that the maximal and average collecti-
bilities detect entanglement of all three states. The maxi-
mum value is attained for the GHZ state,
Ymax½jGHZi� ¼ 16=64 while Ymax½jWi� ¼ 9=64. As this
quantity for the biseparable state reads Ymax½jBSi� ¼
4=64 and Ymax½j�sepi� ¼ 1=64, the collectibility offers an

experimentally accessible measure capable to distinguish
the genuine three-parties entanglement.
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