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Motivated by recent experiments carried out by Spielman’s group at NIST, we study a general scheme for

generating families of gauge fields, spanning the scalar, spin-orbit, and non-Abelian regimes. The NIST

experiments, which impart momentum to bosons while changing their spin state, can in principle realize

all these. In the spin-orbit regime, we show that a Bose gas is a spinor condensate made up of two non-

orthogonal dressed spin states carrying different momenta. As a result, its density shows a stripe structure

with a contrast proportional to the overlap of the dressed states, which can be made very pronounced by

adjusting the experimental parameters.
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The recent success of the NIST group [1,2] in generating
Abelian gauge fields in ultracold atomic gases has created
exciting opportunities to simulate electronic transport in
solids using these highly configurable gases. Recently, the
NIST group has also reported the creation of spin-orbit
coupling in a pseudo spin- 12 Bose gas [3]. This is a signifi-

cant development in cold atom research. Not only will
this allow for the simulation of a wide array of spin-orbit
effects in solids, it will also provide opportunities to study
spin-orbit effects in bosons, giving rise to a class of quan-
tum many-body effects with no analog in solids.

What is amazing is the simplicity of the experimental
setup. The key element consists of only a pair of lasers
and an external magnetic field. Moreover, going from the
previously studied Abelian gauge fields [1,2] to the spin-
orbit case [3] (as well as the non-Abelian regime) requires
nothing more than turning down the laser power, showing
that all these regimes are continuously connected to each
other. In this Letter, we show that in the presence of spin-
orbit interaction, and more generally in the presence of
non-Abelian gauge fields [4–18], a spinor condensate
will develop a spontaneous stripe structure in each spin
component, reflecting a ground state made up of two
nonorthogonal dressed states with different momenta.
Depending on interactions, this ground state can reduce
to a single dressed state. These momentum-carrying stripes
are the macroscopic bosonic counterpart of the spin-orbit
phenomena in fermions that are being actively studied in
electron physics today.

Since spin-orbit interactions are closely related to
non-Abelian gauge fields, we shall first discuss a general
scheme for creating effective gauge fields that allow one to
go continuously from the Abelian to spin-orbit, to non-
Abelian regimes. We shall refer to this as the ‘‘generalized
adiabatic’’ scheme. It works as follows: consider the
Hamiltonian h ¼ p2=2MþWðrÞ that operates on an
atom with internal degrees of freedom, such as alkali atoms
with hyperfine spin F. W is a potential in spin space that
varies spatially with characteristic wave vector q. The

energy scale for the spatial variation of W is then �q ¼
@
2q2=2M. If W has a group of L states (L < 2Fþ 1) at
the bottom of its spectrum lying within an energy range
�E � �q and is well separated from all other higher

energy spin states by �q, then the low energy phenomena

of the system can be described within this reduced mani-
fold of L states. By going into a frame in this manifold that
transforms away the spatial variations of the spin states, a
gauge field emerges [19,20]. The gauge field is Abelian if
L ¼ 1. For L � 2, a spin-orbit interaction or non-Abelian
gauge field can emerge. Thus, by moving the high energy
states across �q into the low energy manifold, one can

increase the dimensionality of this low energy manifold
and create non-Abelian gauge fields with increasingly rich
structure. It should be noted that this is very different from
the tripod scheme in most theoretical proposals, which
makes use of a set of dark states sitting above a short-lived
ground state of the system [5]. In contrast, the generalized
adiabatic scheme uses the lowest energy states, thereby
eliminating collisional loss and hence, the intrinsic heating
of the tripod scheme.
Before proceeding, it is useful to note the unique fea-

tures of non-Abelian gauge fields. In the Abelian case, a
constant vector potential has no physical effect since it can
be gauged away. This is not true for the non-Abelian case,
however, because of its noncommutativity and a constant
non-Abelian vector potential will give rise to physical
effects. Moreover, non-Abelian gauge fields inevitably
lead to spin-orbit coupling, so any potential (such as a
confining trap) that alters particle trajectories also causes
spin rotation. This immediately implies significant differ-
ences between bosons and fermions. For fermions, the
Pauli principle means that any spin effects are the result
of contributions from all occupied states. In contrast, bo-
sons will search for or even construct (through interaction
effects) an optimum (i.e., lowest energy) spin state which
will become macroscopically occupied at low tempera-
tures thanks to Bose statistics. This Bose enhancement
gives rise to gauge field effects visible at the macroscopic
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level. The current experiments at NIST already give a way
to study macroscopic spin-orbit effects.

The NIST setup and the effective Hamiltonian.—The
NIST setup consists of two counter propagating lasers
with frequency difference ! and momentum difference q
directed along x̂ impinging on a spin F ¼ 1 Bose conden-
sate of 87Rb atoms. There is also a magnetic field along ŷ
with a field gradient. (See Fig. 1). The lasers induces a
Raman transition in the atom, transferring linear momen-
tum qx̂ to the Bose gas while increasing the spin angular
momentum by @ at the same time. A similar scheme has
been proposed earlier in Ref. [21]. The single particle

Hamiltonian is hðtÞ¼ p2

2MþWðtÞ, whereWðtÞ¼�@�yFyþ
@�F2

y� @�R

2 ½eiðqx�!tÞðFzþ iFxÞþH:c:�, where F is the

spin-1 operator. @� is the quadratic Zeeman energy.
@�y ¼ @�o þGy is the Zeeman energy produce by the

magnetic field along ŷ. The �o term is due to the constant
magnetic field and the Gy term comes from the field
gradient. �R is the Rabi frequency associated with the
Raman process. In the frame rotating in spin space about
ŷ with frequency !, the Hamiltonian becomes static,

H¼hðt¼0Þþ@!Fz, and is given by H ¼ p2

2M þW, with

W=@ ¼ � ��yFy þ �F2
y ��RðcosqxFz � sinqxFxÞ (1)

¼ e�iqxFyð� ��yFy þ �F2
y ��RFzÞeiqxFy (2)

and ��y ¼ �o �!þGy.

Equation (2) shows that W has a very simple level
structure in the frame rotating in spin space along ŷ with
angle qx. For simplicity, we take F ¼ 1 and G ¼ 0. The
following cases are of particular interest: (i) Abelian case:
this occurs when�R � �, �q=@, with! tuned close to�o

so that ��y � 0. The ground state in the rotating frame is the

m ¼ þ1 state along ẑ, isolated from the other two states
(m ¼ 0, �1 along ẑ) by �@�R > �q. (ii) Spin-orbit case:

this occurs when � � �R, �q, with ! tuned closed to

! ¼ �o � �. In this case, the states m ¼ 1 and m ¼ 0
along ŷ lie at the bottom of the spectrum, separated from
the third statem ¼ �1 by 2@� > �q. We shall from now on

focus on this case.

Let ĉ y
m and �̂y

m be the operators that create a boson with
spin projection m along ŷ in the laboratory frame and in

the rotating frame in spin space; and ĉ m ¼ ðeiqxFy�̂Þm ¼
eiqxm�̂m. Focusing on the lowest two states �̂m, m ¼ 1, 0,
the Hamiltonian is

K̂ ¼
Z �

�̂y
mHmn�̂n þ 1

2
n̂mgmnn̂n � ðV ��Þn̂

�
; (3)

where n̂m ¼ �̂y
m�̂m, n̂ ¼ P

mn̂m, V ¼ 1
2M!2

Tr
2 is the har-

monic trap, � is the chemical potential, gmn are interac-
tions between bosons in spin statesm and n, g10 ¼ g01, and

Hmn ¼ @
2

2M

�r
i
þ x̂q

1 0
0 0

� ��
2 þ @

�Gy �i�Rffiffi
2

p

i�Rffiffi
2

p 0

0
@

1
A: (4)

When G ¼ 0, the solutions � of the resulting Schrödinger
equation

HmnðxÞ�nðxÞ ¼ E�mðxÞ (5)

have the following property that

�0
mðxÞ ¼ ei�e�iqxð�1Þmn�

�
nðxÞ; �1 ¼ 0 1

1 0

� �
(6)

is also a solution, where � is an arbitrary phase.
Single particle ground state.—For zero-field gradient,

G ¼ 0, the momentum eigenstates are of the form

�ðpÞ
m ðxÞ ¼ eipx ~�m, ~��

�
u
v

�
, and Eq. (5) becomes

@
2

M

�
k2 þQ2

2
þ kQ�3 þ ‘2�2

�
u
v

� �
¼ Ep

u
v

� �
; (7)

where we have defined

Q � q=2; k � pþQ: (8)

and, for later use, have expressed @�R in terms of the wave
vector ‘ and angle �:

‘2

Q2
� M�R

@
ffiffiffi
2

p
Q2

¼
ffiffiffi
2

p
@�R

�q
� sin�: (9)

The eigenvalues come in two branches, with energies

E1ð0ÞðpÞ ¼ @
2

M ð k2þQ2

2 þ ð�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkQÞ2 þ ‘4
p Þ (see Fig. 2). The

ground states are the minima of E0ðpÞ at
p	 ¼ 	ko � q=2;

ko ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � ‘4=Q2

q
¼ ðq=2Þ cos�;

(10)

FIG. 1 (color online). Schematic of the experimental setup at
NIST [3]. The Raman process consists of two lasers with wave
vectors kop þ qx̂ and kop, frequencies !op þ! and!op imping-

ing on the atomic cloud. Atoms excited by the laser will have
their momenta increased by qx̂ while their spin projection along
ŷ is changed by 1, as shown in the energy diagram at top.
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with energy

E0ðp	Þ ¼ � @
2‘4

2MQ2
¼ � 1

2

ð@�RÞ2
�q

� Eo: (11)

The energy of the upper branch at these momenta is
E1ðp	Þ ¼ �q � @

2‘4=ð2MQ2Þ, which is higher by �q. It

is worth noting that the value of the ground state energy is
not of the order �@�R, but a higher energy �ð@�RÞ2=�q.
The wave functions at these degenerate ground states are

�ðp	Þ
m ðxÞ ¼ eip	x ~�ðp	Þ

m ,

~� ðpþÞ ¼ i sin�2
cos�2

 !
; ~�ðp�Þ ¼ i cos�2

sin�2

 !
: (12)

Note that the states �ðp	ÞðxÞ are connected by Eq. (6) with
� ¼ 	=2. They are orthogonal due to their different mo-
menta. The spin states, however, have nonzero overlap,
since

hpþjp�i ¼ ~�ðpþÞy ~�ðp�Þ ¼ sin�: (13)

Pseudo spin-1=2 spinor condensate.—Condensing in the

dressed states jpð	Þi, the field operator, which admits the

expansion �̂mðxÞ ¼
P

p�
ðpÞ
m ðxÞâp, turns into a spinor field

of the form

�mðxÞ ¼ Aþ�
ðpþÞ
m ðxÞ þ A��

ðp�Þ
m ðxÞ: (14)

Because of the nonzero overlap, Eq. (13), the density
nmðxÞ ¼ j�mðxÞj2 of each spin component will develop a
stripe structure. This can be seen by noting that the total
density nðxÞ ¼ n1ðxÞ þ n0ðxÞ and the ‘‘magnetization’’
mðxÞ ¼ n1ðxÞ � n0ðxÞ are given by

nðxÞ¼ jAþj2þjA�j2þsin�ðA�þA�e�2ikoxþc:c:Þ (15)

mðxÞ ¼ � cos�ðjAþj2 � jA�j2Þ: (16)

Note also that mðxÞ is independent of �. Equation (15)
shows that the contrast of the oscillation is set by the
overlap, sin�, whereas the wavelength of the stripe is
	=ko ¼ 2	=ðq cos�Þ. Thus, both contrast and wavelength
increase with � for � < 	=2.
The amplitudes A	 are determined by minimizing the

Gross-Pitaevskii (GP) functional of Eq. (3), which is

obtained by replacing �̂mðxÞ with the c number �mðxÞ,
and n̂mðxÞ with nmðxÞ ¼ j�mðxÞj2. Defining jAj2 ¼
jAþj2 þ jA�j2, and a	 � A	=jAj, the GP functional
then reads,

K ¼ ðEo ��ÞjAj2 þ 1
2jAj4Gðaþ; a�Þ; (17)

where jAj4Gðaþ; a�Þ ¼
R
gmnnmðxÞnnðxÞ. Note that

while Aþ and A� give distinct contributions to the kinetic
energy due to their differing momenta p	, they are coupled
through interaction due to the overlap of their spin
functions. For example,

R
n21ðxÞ ¼

R½n2ðxÞ þm2ðxÞ þ
2nðxÞmðxÞ�=4, and the mixing of Aþ and A� appears inR
n2ðxÞ. To minimizeK, we first minimizeGðaþ; a�Þwith

the constraint jaþj2 þ ja�j2 ¼ 1 to obtain the optimal
value (aoþ, ao�) and

jAj2 ¼ ð�� EoÞ=Go; Go ¼ Gðaoþ; ao�Þ: (18)

Since the minimization is straightforward, we shall only
present the results, which are shown in Fig. 3. The phase
diagram depends on the parameters


 ¼ g10=g; � ¼ ðg11 � g00Þ=g;
g ¼ ðg11 þ g00Þ=2:

(19)

and two numbers 
c and �c derived from the laser pa-

rameter sin� defined in Eq. (9). They are 
c � 2�tan2�
2þtan2�

, and

�c¼ cos�ð2� tan2�Þ. For g11, g00, g10 > 0, (as in 87Rb),
there are three possibilities: (I) Two dressed states, with
both A	 � 0; single dressed state with (II) �pþðxÞ,
(A�¼0), or (III) �p�ðxÞ, (Aþ ¼ 0).

FIG. 2 (color online). The energy levels E0ðpÞ and E1ðpÞ as a
function of k � pþ q=2. The lower branch E0ðpÞ has two
degenerate minima at k ¼ 	k0, where k0 ¼ ðq=2Þ cos�. The
energy difference between the lower and upper branch at 	k0
is �q ¼ @

2q2=2 m.

FIG. 3. The phase diagram of pseudospin-1=2 Bose gas:
Region I is a superposition of two dressed state with momentum
pþ and p�, II and III are the single dressed states pþ and
p� respectively. 
, �, 
c, and �c are defined in text.
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Phase (I) occurs within the triangle shown in Fig. 3,
bounded by the lines xyc 	 yxc ¼ xcyc. The region exists

only when 
c > 0, which means sin� <
ffiffiffiffiffiffiffiffi
2=3

p
. Otherwise,

interaction effect will drive the condensate into a single
dressed state. In phase (I), the amplitudes are

jao	j2 ¼
1

2

�
1	 �= cos�

2� 2
� ð1þ 
Þtan2�
�
; (20)

and Go ¼ Gðaoþ; aoþÞ ¼ � �2

2ð2�2
�ð1þ
Þtan2�Þ þ ð1þ 
Þ

ð1þ 1

2 sin
2�Þ. The relative phase between Aþ and A�,

however, cannot be determined within the GP approach.
This phase can be fixed by perturbations such as field
gradient the breaks the symmetry Eq. (6), or by quantum
fluctuation effects that go beyond GP. As discussed before,
the density of each of the spin component n1 and n0 of this
phase has a stripe structure. The case � ¼ 0 (g11 ¼ g00) is

special. In that case, we have jAþj ¼ jA�j for 
< 
c.

For 
> 
c, the two dressed states �ðpþÞ and �ðp�Þ are
degenerate.
In the presence of a harmonic trap VðrÞ ¼ 1

2M!2
Tr

2 with

harmonic length d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðM!Þp � 2	=q, the wavelength

of the stripe, we can apply Thomas-Fermi approximation,
and the condensatewave function is given by Eq. (14), (18),
and (20) with chemical potential � in Eq. (18) replaced by
�ðrÞ ¼ �� VðrÞ, i.e., for Phase (I),

�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðrÞ � Eo

Go

s 2
4aoþeipþx

i sin�2

cos�2

 !

þ ei�ao�eip�x
i cos�2

sin�2

 !35: (21)

The density profile n1ðrÞ for the m ¼ 1 spin component
along ŷ is shown in Fig. 4 for, e.g., � ¼ 1

4	,N ¼ 2:5
 105.

Apart from the stripe structure, the presence of these
phases can be detected by measuring the displacement of
the atom cloud after expansion when the trap is turned off.
For the condensate with two dressed states, after expan-
sion, the cloud will separate into two atom clouds moving
with different momenta. In contrast, for the condensate in a
single dressed state, the cloud will expand in one direction,
depending on the momentum p	.
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