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A decoherence-free subspace (DFS) is an important class of quantum-error-correcting (QEC) codes that

have been proposed for fault-tolerant quantum computation. The applications of QEC techniques,

however, are not limited to quantum-information processing (QIP). Here we demonstrate how QEC

codes may be used to improve experimental designs of quantum devices to achieve noise suppression. In

particular, neutron interferometry is used as a test bed to show the potential for adding quantum error

correction to quantum measurements. We built a five-blade neutron interferometer that incorporates both a

standard Mach-Zender configuration and a configuration based on a DFS. Experiments verify that the DFS

interferometer is protected against low-frequency mechanical vibrations. We anticipate these improve-

ments will increase the range of applications for matter-wave interferometry.

DOI: 10.1103/PhysRevLett.107.150401 PACS numbers: 03.75.Dg, 03.65.�w, 03.67.Pp, 42.50.�p

A major challenge in the development of quantum com-
puters [1,2] and quantum devices is combatting noise,
which dephases or decoherences the quantum state and
causes it to become classical [3]. Fortunately, the ideas of
quantum error correction [4] have shown us how to protect
fragile quantum information by encoding into a larger
Hilbert space [5]. With a decoherence-free subspace
(DFS) the information is passively protected against noise
with a certain symmetry without requiring additional re-
sources [6]

QEC codes have been experimentally demonstrated on
several systems [7], but their relevance to experimental
design has not yet been fully appreciated. We have pre-
viously suggested that a QEC code may be used to design a
matter-wave interferometer robust to the dominant noise
source, which affects the device quality [8]. Here we
demonstrate the realization of such neutron interferometer,
which uses a DFS to suppress errors induced by low-
freqeuncy mechanical vibrations. The required symmetry
arises from the noise being a common mode vibration of
the entire interferometer.

Matter-wave interferometers are important tools in the
understanding of quantum mechanics [9], but are suscep-
tible to environmental noise due to the slow velocities of
matter waves. When describing the phase of the particle
inside the interferometer by a classical action along differ-
ent interferometer paths, we must account for the motion of
the device. While traversing a standard Mach-Zender (MZ)
interferometer, a particle’s momentum and path length will
be modified depending on the velocity of the interferome-
ter, causing a relative phase to develop between the two
paths. By labeling the paths, mechanical vibrations distin-
guish between them and destroy the quantum coherence of

the device. This leads to a loss of contrast—a measure of
the quality of the device related to the amount of coherence
between the two paths. The DFS version of the MZ design
compensates for the change in relative phase between the
two paths, causing the noise to act unitarily on these two
paths. The interferometer, then, becomes decoupled from
low-frequency vibrations. The immediate consequence of
this work is that the DFS interferometer eliminates the
need for large vibration isolation systems, making the
device more compact and accessible to research in fields
such as condensed matter, biology, and spintronics.
We demonstrate the improvements offered by the DFS

design by machining a five-blade single crystal neutron
interferometer that incorporates both the MZ [10,11] and
DFS [8] interferometers in one crystal. The switch between
designs occurs in situ by moving cadmium (Cd) beam
blocks. In Fig. 1(a) we show a drawing of the five-blade
interferometer used in this study. It was cut from a crystal
Si ingot at the University of Missouri machine shop. The
interferometer blades are oriented perpendicular to the
(220) crystal planes. The incoming neutron beam coher-
ently splits at these blades by Bragg scattering. To preserve
crystallographic registration of the blades, each blade re-
mains attached to the common base.
As shown in Fig. 1, the neutron beam enters the single

crystal interferometer from the left and is split coherently

by the first blade over two paths. Blades 2, 3, and 4 direct

the beams through four different paths and recombine them

at the last (fifth) blade. Interference of these paths is

observed by 3He detectors placed in the O and H beams.

Using Cd blocks we can selectively absorb all neutrons in a

given path. As shown in Fig. 1(b), by placing Cd blocks we
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can choose either the MZ (three blade, upper schematic

diagram) or DFS (four blade, lower diagram) setups.
Figure 1(c) outlines the experimental setup of the

Neutron Interferometer and Optic Facilities at the
National Institute of Standards and Technology,
Gaithersburg, MD. The interferometer is placed inside an
enclosure with temperature stability of a few mK to main-
tain phase stability [12]. The enclosure is isolated from
external vibrations by a high position stability (< 1 �m)
vibration isolation system. A detailed description of this
facility can be found in [13]. We add controlled vibrations
to the system through a motor with an off-center shaft. We
used different lengths and masses to create vibrations with
controlled amplitudes. Vibrations were monitored by a
short-period seismometer.

To measure the contrast we introduce a phase difference
between the two interferometer paths and measure the
phase dependence on the output intensity at both the O

and H beams. It is convenient to introduce this phase
difference through a fused silica phase flag placed between
the first and the second blades [see Fig. 1(a)]. Figure 2(a)
shows the intensity dependence for the three-blade (MZ)
configuration with and without added noise. The vibrations
were artificially introduced with a fundamental frequency
of 8 Hz. Without vibrations the interferometer has a 12%
contrast; with vibrations there is no detectable contrast.
Figure 2(b) shows the contrast for the four-blade (DFS)

interferometer under the same conditions used for the three-
bladeMZ setup. Here there is nomeasurable loss of contrast
with added noise. The contrast in both cases is 23%. As
expected, the DFS configuration is more robust to applied
noise than the MZ configuration. While the contrasts with-
out vibrations for both the MZ and DFS setups are lower
than that seen for the best available neutron interferometers
(around 90% [14]), the key fact is the reduced sensitivity to
external noise. The reason for the lower contrast is the
incoming neutron beam occupies a cross-sectional area of
1� 6 mm2 and blade imperfections lead to a dispersion of
phases over this area. With the thin blades in this interfer-
ometer we cannot further etch the surface to improve con-
trast while maintaining proper blade separation. However,
this defect is correctable and will be addressed in future
implementations of DFS interferometers.
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FIG. 2 (color online). (a) Interferograms from the three-blade
(MZ) interferometer without vibrations (open circles) and with
8 Hz vibrations (closed circles). We observe a complete loss of
contrast with 8 Hz vibrations. (b) Interferograms from the four-
blade (DFS) setup at the same conditions as in (a). Within
experimental errors there is no loss of contrast from the added
vibrations.

FIG. 1 (color). (a) A diagram of the five-blade neutron inter-
ferometer. The neutron beam enters from the left and is coher-
ently split by the first blade via Bragg diffraction, is diffracted by
the following sequence of blades, and finally recombined and
interferes at the fifth blade. After passing through the interfer-
ometer, the beam is captured by 3He detectors in the O and H
beams. By moving cadmium shields up or down we can in situ
select the three (MZ) or four (DFS) blade interferometer con-
figuration. (b) A schematic top-view representation of the five-
blade beam paths. The upper diagram represents the MZ setup.
Here the beam block removes the two central beam paths and
leaves the outer paths untouched. When we block the outer paths
only we have the four-blade (DFS) setup, as shown in the lower
diagram. (c) A schematic diagram of the neutron interferometer
facilities at the National Institute of Standards and Technology.
This facility has several vibration isolation stages to remove
vibrations above 1 Hz. The primary stage consists of a 40-ton
table that floats on actively controlled vibration isolation pads.
The interferometer is enclosed in a temperature-controlled box.
To test the robustness of the interferometers to mechanical
vibrations we introduced vibrations by a motor with an off-
center mass attached to the table.
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The measured and expected frequency dependence of
the contrast of these two (MZ and DFS) setups is shown in
Fig. 3. Over the frequency range that requires large vibra-
tion isolation systems (typically 5–10 Hz), we see a clear
difference between the two. The dominant error that leads
to a loss of contrast in the MZ interferometer is the change
in neutron momentum due to interaction with a moving
blade. At low frequencies the single crystal interferometer
moves as a solid body, and both translational and rotational
vibrations can result in a distribution of the neutron’s
momentum. For the MZ configuration, these changes in
the neutron’s momentum distinguish the paths and lead to a
loss of contrast. In the DFS geometry the second reflection
avoids the labeling of paths by the neutron’s momentum
and contrast is restored. Because the interferometer blades
vibrate together, reflections at a latter blade can compen-
sate the change in momenta introduced by an earlier blade.
A second mechanism leading to a loss in contrast is a
defocusing of the neutron path at the last (interfering)
blade, from vibrations in the plane of the neutron beam
paths and perpendicular to the Bragg vector (x vibrations
of [8]). The precision with which the interfering beams
must overlap at the final blade to preserve coherence is
often described by a coherence length, bound by the in-
verse of the spread in neutron momenta. Vibrations in-
crease the spread in momenta, thereby decreasing the
effective coherence length and leading to lost contrast.
The coherence length of the DFS design is insensitive to
these vibrations.

As shown before [8], a standard (MZ) neutron interfer-
ometer is most sensitive to rotational vibrations while the
DFS design is protected from them. The loss of contrast
again results from the phase difference between the two
paths introduced by the rotational motion. If we describe
rotational vibrations as a time-varying angle �ðtÞ about the
interferometer center of mass, then for the MZ and DFS

configurations this phase difference is, respectively (see
Supplemental Material [15]),

��MZ � � 8mnL
2

@vn?Bragg

½vnkBragg � L _�ð0Þ� _�ð0Þ; (1)

��DFS � 48mnL
3

@v2
n?Bragg

½vnkBragg � 2L _�ð0Þ� €�ð0Þ: (2)

Where L is the distance between the interferometer blades,
mn is the neutron mass, and vnkBragg (vn?Bragg) is the

neutron velocity parallel to (perpendicular to) the Bragg
vector. Note that the DFS phase is proportional to the
second derivative of the rotation angle while the MZ phase
is proportional to the first derivative (compare with y
vibrations of [8]). Also, note that for any constant rotation
�ðtÞ ¼ !t, thus _� ¼ ! and €� ¼ 0. The phase difference for
the MZ interferometer is then ��MZ / !A, while the DFS
phase difference is zero. A is the area enclosed by the
neutron paths of the interferometer.
The same conclusion may be reached by attributing the

loss of contrast to the Sagnac effect [16,17]. The Sagnac
effect is concerned with the phase introduced in a MZ
interferometer by a uniform rotation of the entire interfer-
ometer. For a rotating MZ neutron interferometer the
Sagnac phase shift is �� ¼ ð2k=vnÞ!A, where k is
the wave number of the neutron and A is the normal area
of the enclosed neutron beam paths. For the DFS design the
phase shift will be zero, as noted in [18]. The Sagnac effect
is a good model for the protection offered by the DFS
interferometer since the time a neutron spends in the
interferometer is less than the period of rotational vibra-
tions. So each neutron sees a fixed frequency and the loss
of contrast is the result of averaging over many events.
The inset of Fig. 3 shows a numerical simulation of

rotational vibrations for both the MZ and DFS interfer-
ometers. A detailed description of the model and predic-
tions for different vibrational modes is discussed in [8].
Here we show the expected contrast for six microradian
rotational vibrations around the center of mass of the
interferometer with a constant amplitude of vibration. In
comparison with the MZ setup, the DFS setup preserves
the contrast up to higher frequencies. This is confirmed by
our experimental data (Fig. 3). For the DFS configuration
the contrast eventually falls off, but at such high frequen-
cies that it is easy to avoid in experiments.
Because mirrors do not exist for thermal neutrons, the

addition of a second central blade leads to a loss of half the
neutron intensity. However, even with this loss, we realize
more than an order of magnitude overall increase in neu-
tron intensity by taking advantage of the robust the DFS
configuration.
The results of this work offer an example of how ad-

vances in quantum-information theory may be applied to
experimental design. These results validate our expectation
that QEC codes may be used to control the effects of noise
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FIG. 3 (color online). Frequency dependence of the contrast
with added mechanical vibrations. The dotted line with closed
circles is for the three-blade (MZ) setup and straight line with
open circles is for the four-blade (DFS) measurements. The inset
shows a simulation for rotational vibrations.
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on useful macroscopic quantum devices. The use of DFS
significantly improves coherent control in neutron inter-
ferometry. We anticipate this approach enabling a new
series of compact neutron interferometers tailored to spe-
cific applications. The techniques demonstrated in this
Letter should also be applicable to other systems [19,20]
that experience similar noise processes. For example, the
effects of undesired center of mass motion caused by
common mode mechanical vibrations of beam splitters in
Bose-Einstein condensate (BEC) type [21–23], atom, and
molecular [24,25] interferometers, should be suppressed
by these methods.
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