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We consider a model self-energy consisting of an isotropic Fermi liquid term and a marginal Fermi

liquid term which is anisotropic over the Fermi surface, vanishing in the same directions as the

superconducting gap and the pseudogap. This model self-energy gives a consistent description of

experimental results from angle-dependent magnetoresistance, specific heat, de Haas–van Alphen, and

measurements of the quasiparticle dispersion near the Fermi surface from photoemission. In particular, we

reconcile the strongly doping-dependent anomalous scattering rate observed in angle-dependent magne-

toresistance with the almost doping-independent specific heat.
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A key to understanding high-Tc superconductivity may
be the anomalous properties of the metallic phase, which
are quite distinct from those found in conventional Fermi
liquids such as elemental metals. Many properties, such as
the pseudogap, are strongly dependent on doping and on the
position on the Fermi surface. One can attempt to describe
the crucial effect of the strong electron-electron interac-
tions by a frequency- and momentum-dependent electronic
self-energy. Angle-resolved photoemission spectroscopy
(ARPES) [1] has been used to deduce various forms for
the self-energy [2–5] including that of the marginal Fermi
liquid phenomenology [6]. However, this approach implic-
itly assumes the existence of quasiparticles and the asso-
ciated analytic structure of the one-electron Green’s
function, which Anderson has contested and proposed an
alternative ‘‘hidden Fermi’’ liquid (HFL) theory [7].

In this Letter, we consider a model self-energy moti-
vated by angle-dependent magnetoresistance (ADMR)
experiments [8–10] and consisting of two terms with dis-
tinctly different dependencies on frequency, momentum,
and temperature. The first term is that of a Fermi liquid
(FL) and is isotropic on the Fermi surface. The second
term, which we denote as an anisotropic marginal Fermi
liquid (AMFL), has the same frequency and temperature
dependence as that of a marginal Fermi liquid, is aniso-
tropic over the Fermi surface, and vanishes in the same
directions as the superconducting gap and the pseudogap
observed in underdoped cuprates. We present a parametri-
zation of this model self-energy which gives a consistent
quantitative description of a wide range of experimental
results on overdoped Tl2201 materials, including ADMR,
specific heat [11], de Haas–van Alphen [12,13], and the
quasiparticle dispersion near the Fermi surface measured
by ARPES [14,15]. In particular, we give a consistent
description of the strongly doping-dependent anisotropic
scattering [9] and the almost doping-independent specific
heat [11]. This is possible because, although the scattering
can be dominated by the AMFL term, the quasiparticle

renormalization is dominated by the FL term. We
compare our parametrization of the self-energy with the
results of different microscopic theories [16–19] based on
Hubbard and t-J models. In particular, we show that pre-
dictions of hidden Fermi liquid theory for the temperature
and doping dependence of the scattering rate and the
magnitude of the specific heat [17,20] are inconsistent
with experiment.
Is there a consistent phenomenology of the experi-

ments?—For overdoped materials ADMR provides a com-
plementary probe to ARPES, measuring the Fermi surface
(FS) and the quasiparticle (QP) lifetime [8–10] at different
points of the FS. Two scattering channels are observed; one
has a quadratic temperature (T) dependence and is approxi-
mately constant with doping, while the second is approxi-
mately linear in T, is anisotropic over the FS [8], and
strongly increases with decreasing doping, as optimal dop-
ing (p ’ 0:16) is approached from the overdoped regime
(see Fig. 1) [9,10]. Information on the self-energy is also
provided through the renormalization of quasiparticle en-
ergies suggested by specific heat CV measurements [11],
ARPES determination of the Fermi velocity [21], de
Haas–van Alphen (dHvA) measurements of the renormal-
ized cyclotron mass [12,13], and the optical effective mass
determined from the Drude weight in the frequency-
dependent conductivity [22]. All of these suggest a weak
doping dependence of the real part of the self-energy, in
contrast to the strongly increasing anisotropic scattering
rate �aniso with decreasing doping shown in Fig. 1. This
raises a question about consistency because the quasipar-
ticle renormalization and scattering rate are not indepen-
dent of one another, being related to the real and imaginary
parts of the self-energy, respectively. The two parts are
related via the Kramers-Kronig relation. Indeed, this rela-
tionship is the origin of the unified picture of the
Kadowaki-Woods ratio in Fermi liquids [23].
Model self-energy.—Following the temperature depen-

dence and anisotropy of the scattering rate determined by
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ADMR, we consider a self-energy consisting of FL and
AMFL contributions:

�ðk; !Þ ¼ �FLð!Þ þ�AMFLðk; !Þ: (1)

The detailed functional form is given in the Supplemental
Materials. As suggested by the isotropic and / T2 scatter-
ing rate in ADMR [8,9], we take the FL self-energy iso-
tropic. The AMFL part of the self-energy depends on� [4]
(azimuthal angle of the Fermi wave vector kF on a 2D FS),
and we assume that it is responsible for the anisotropic and
T-linear part of the scattering deduced from ADMR [8].

Renormalization of the bare-band mass mb is deter-
mined by 1� @�0ð�;!Þ=@!j!¼0, which for our model
self-energy gives [24]

m�ð�Þ
mb

¼Zð�Þ�1¼1þ 4

�

s

!�
FL

þ�ð�Þln
�
!�

AMFL

�T

�
; (2)

where Zð�Þ is the QP weight at angle�. s parametrizes the
strength of the electron-electron scattering associated with
the FL term,!�

FL is the FL high frequency cutoff, �ð�Þ is a
�-dependent dimensionless AMFL coupling constant, and
!�

AMFL is the AMFL high frequency cutoff. We use units
@ ¼ kB ¼ 1. In general, there is also a contribution to the
renormalization from @�=@k?, where k? is a momentum
perpendicular to the FS. We assume this contribution is
negligible [24].

Parametrization of model self-energy.—In the
Supplemental Materials, we estimate the parameters in
Eq. (2) from the ADMR results and show that s=!�

FL >
�ð�Þ and that �ð�Þ vanishes in the nodal direction.

Together, this leads to a relatively small effect of the
AMFL part of the self-energy on the mass renormalization.
Briefly, the isotropic T2 term gives s=!�2

FL ’ 9:2 ðeVÞ�1.
The term linear in T gives the strength of the AMFL self-
energy and its � dependence [9],

�ð�Þ ¼ 1:6cos2ð2�ÞTcðpÞ=Tmax
c ; (3)

where the doping dependence is encoded via the relation
between Tc and p [24]. This expression for �ð�Þ explicitly
takes into account that the AMFL self-energy is largest in
the antinodal direction and zero in the nodal direction
[8,10] and that it scales with Tc in the highly overdoped
regime [9]. The Fermi liquid cutoff !�

FL ’ 0:23 eV is
estimated from measurements of CV in the strongly over-
doped regime with Tc ¼ 0 which give m�=me ¼ 4:8� 0:8
[11]. Estimating the AMFL cutoff !�

AMFL is discussed
below.
Renormalization factor.—Figure 2 shows the calculated

density of states at the Fermi energy �ð0Þ as a function of
doping for various !�

AMFL together with values deduced
from specific heat and de Haas–van Alphen experiments.
For the calculation of �ð0Þ, one evaluates the band massmb

(or strictly the band density of states at the Fermi energy)
from the bare-band dispersion �0k, which is approximated
with a tight-binding model fit to the LDA bands [Eq. (S7)
in the Supplemental Materials [24]]. It is evident from
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FIG. 1 (color online). Strong doping dependence of the normal
state anisotropic scattering rate in an overdoped cuprate super-
conductor. The scattering rate and its anisotropy are those
deduced from the ADMR for Tl2201 at 40 K [9]. The isotropic
scattering rate �iso (points and dashed line), which is constant on
the Fermi surface, shows negligible doping dependence. In
contrast, the anisotropic scattering rate �aniso (squares and full
line), which is maximal in the antinodal direction and zero in the
nodal direction, depends strongly on doping. The doping depen-
dence of �aniso follows the superconducting transition tempera-
ture Tc (dotted line) in this overdoped regime [9,10]. The
scattering rates are shown in units of !0

c ’ 1 meV, the cyclotron
frequency at the magnetic field at which the measurements were
made.
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FIG. 2 (color online). Renormalized density of states
�ð0Þ=�freeð0Þ as a function of doping for the anisotropic marginal
Fermi liquid model with various values of the cutoff frequency
!�

AMFL. The shaded area shows the range of measured values

from CV [11]. Triangles (dHvA-1) and diamonds (dHvA-2) with
error bars show the effective masses deduced from the de Haas–
van Alphen effect in Refs. [12,13], respectively. Points with
different lines show our estimate deduced from the observed
ADMR scattering rate (see Fig. 1) together with Eq. (2) for
various !�

AMFL, T ¼ 120 K, and !�
FL ¼ 0:23 eV. Our estimates

are within the measured uncertainties of CV , which shows that
strongly doping-dependent ADMR scattering rates and doping-
independent CV can be consistently described. The Brinkman
and Rice result [28] is shown with a dash-dotted line, and the
HFL result [20] is shown with a double-dotted line. The density
of states is normalized to that for free electrons in two dimen-
sions: �freeð0Þ ¼ 4�me.
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Fig. 2 that, although the scattering rate of QP in the anti-
nodal direction (or AMFL part of self-energy) strongly
increases with decreasing doping, the density of states
(and CV) stays rather constant and is only mildly affected
by the AMFL self-energy for all !�

AMFL & 0:4 eV. This is
because m�=mb � 1þ 4s=�!�

FL þ �ð0Þ for T � 120 K.
Subtleties associated with the relationship between the
effective mass and CV for the AMFL are discussed in the
Supplemental Materials [24].

Hence, it is possible for the model self-energy to give a
consistent description of the complete doping and tempera-
ture dependence of both ADMR [8–10] and CV measure-
ments [11] with !�

FL ’ 0:23 eV. The results are within

measured uncertainty for any !�
AMFL & 0:5 eV which

is comparable to previous estimates from ARPES,
�0:2 eV–0:4 eV [4], �0:1 eV [3], and �0:4 eV–0:5 eV
within the isotropic MFL phenomenology [5,25]. From the
above analysis it is evident that not only small! properties
are relevant but also the high-energy cutoffs. These may be
reflected as kinks or waterfalls in the QP dispersion
[5,26,27].

Renormalized QP dispersion.—Our renormalized dis-
persion is also in good agreement with the ARPES QP
dispersion [14,15] near ð�; 0Þ [see Fig. 3(a)], if a small
correction of fixing the noninteracting FS to the one mea-
sured in ARPES [14] is taken into account by applying a
bare-band shift of ½0:17 cosð4�Þ � 0:1 cosð8�Þ� eV. The
agreement in the nodal direction near the FS is satisfactory,
but near the ð0; 0Þ point we observe the waterfall due to the
sharp cutoff at !�

FL [Fig. 3(b)]. The waterfall arises due to
@�0=@! becoming * 1 in the vicinity of a high frequency
cutoff!�

FL (for example, see Fig. 1 in Ref. [5]). This results

in a sharp drop of the QP dispersion and in a broader
spectra at !�!�

FL. The discrepancy at the band bottom

may come from difficulties of determining the dispersion
from a very broad ARPES spectra or may be an artifact of
our approximation for self-energy [24].
Our estimate of � for the overdoped regime is in sat-

isfactory agreement with the values estimated from
ARPES, although some differences are still present [24].
The ARPES estimate for the QP lifetime on the FS [14] in
Tl2201 is an order of magnitude larger than that from
ADMR and has the opposite angular dependence. This
would imply that the renormalization of the effective
mass and CV would be 1 order of magnitude larger, unless
the scattering is elastic or some other effects, e.g., surface
reconstruction, additionally broaden the ARPES spectra.
To partially conclude, our model self-energy is capable

of describing a range of experimental results, including the
strongly doping-dependent ADMR scattering rate and al-
most doping-independent CV . Earlier, it has been shown
that the scattering rate deduced from ADMR can describe
the temperature dependence of the intralayer resistivity and
Hall coefficient [8,9]. Future studies should examine
whether for overdoped cuprates this model self-energy
can describe the optical conductivity, asymmetry of tun-
neling spectra, and ARPES energy distribution curves,
particularly since these have been invoked as evidence
for the hidden Fermi liquid theory [7].
Microscopic theories.—It is a challenge for microscopic

theory to explain large renormalizations of about 4 (see
Fig. 3) and the �, T, and p dependence of the self-energy
in the overdoped region. The Brinkman-Rice theory [28]
predicts too small of a renormalization of ð1þ pÞ=ð2pÞ
(Fig. 2), which becomes even smaller if the antiferromag-
netic interaction J is taken into account [24]. Within the
weak coupling Hubbard model, the MFL component arises
from nesting of the Fermi surface or proximity to a van
Hove singularity [29,30], but the latter is not applicable to
Tl2201 [24]. Functional renormalization group treatment
of the Hubbard model shows scattering rates in qualitative
agreement with ADMR [16] but predicts an order of mag-
nitude smaller anisotropic scattering rate than observed in
experiment [24]. We give a more detailed comparison with
microscopic theories in the Supplemental Materials [24]
together with candidates of microscopic model calcula-
tions, which give a scattering rate similar to our model
and of which some may be improved or ruled out if
quantitatively compared with our self-energy.
HFL theory.—Anderson has argued that the overdoped

cuprates can be described in terms of a Gutzwiller pro-
jected Fermi liquid which exhibits power law singularities
related to the x-ray edge problem [7]. Casey and Anderson
calculated the scattering rate [see Eq. (S10) in the
Supplemental Materials [24]] and compared it to ADMR
data [17]. However, the scattering rate in HFL [17] has a
linear T dependence only for T * WHFL=2� 400 K [24],
in strong contrast to the ADMR measurements [8],
where the T linear term is observed even for T < 60 K
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FIG. 3 (color online). Comparison of AMFL spectral function
with the quasiparticle dispersion measured by ARPES. Spectral
functions calculated with our self-energy (T ¼ 10 K, Tc ¼
30 K,!�

AMFL ¼ 0:2 eV,!�
FL ¼ 0:23 eV) are shown with density

plots near the van Hove singularity for k ¼ ð�; kyÞ (a) and near

the band bottom in the nodal direction for k ¼ ðk; kÞ (b). The
agreement with the measured ARPES QP dispersion [14]
(dashed line) is very good near the van Hove singularity and
at the FS in the nodal direction (b). Some discrepancy is found at
the band bottom, where we observe a waterfall originating from
!�

FL. The bare-band dispersion is shown with the dotted line.
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(see Fig. 4 and Fig. S1 in the Supplemental Materials [24]).
WHFL is a HFL bandwidth [24]. Furthermore, they argue
that the anisotropic scattering rate deduced from ADMR
emerges solely as a consequence of anisotropy of the Fermi
momentum and of the Fermi velocity on the FS [17,20]. To
obtain anisotropies comparable to ADMR, Casey and
Anderson require that vFð0Þ=vFð�=4Þ ’ 0:5. We note that
the anisotropy in vFð�Þ found in LDA calculations is
smaller [vFð0Þ=vFð�=4Þ ’ 0:8 [14,31]]. In addition, the
LDA calculations show that this ratio increases with in-
creasing doping due to approaching the van Hove singu-
larity [31]. Hence, HFL theory predicts a small increase in
the ratio of anisotropic to isotropic scattering with increas-
ing doping (this effect is not taken into account in Fig. 4);
the opposite trend is observed with ADMR [9] (see Figs. 4
and S2). Furthermore, HFL predicts CV / T=�0F with no

renormalization effects [20], which is significantly smaller
than experimental results for Tl2201 (see Fig. 2) [32].

In conclusion, we have shown that it is possible to
give a consistent description of a wide range of experi-
mental results for overdoped cuprates in terms of a model
self-energy which contains an isotropic Fermi liquid con-
tribution and an anisotropic marginal Fermi liquid contri-
bution. The former is doping-independent, and the latter
increases significantly with decreasing doping. This model
self-energy is quantitatively inconsistent with some

microscopic model calculations and provides an explicit
form against which other calculations can be compared.
The two distinct terms in the self-energy may have two
distinct physical origins. The isotropic Fermi liquid terms
arises largely from local physics. The large on site
Coulomb repulsion U reduces intersite hopping and leads
to Fermi liquid scattering of quasiparticles. Qualitatively,
this can be captured in a Brinkman-Rice picture and by
dynamical mean-field theory. In contrast, the anisotropic
marginal Fermi liquid term arises from nonlocal physics,
and its physical origin is unclear. The relative importance
of different types of fluctuations (antiferromagnetic, super-
conducting, or d-density wave), Fermi surface nesting, and
proximity to a quantum critical point is unclear.
This work shows that the overdoped cuprates are not

simple Fermi liquids as has often been claimed. Instead,
they exhibit remnants of some of the same physics present
in the optimally doped materials (marginal Fermi liquid
behavior) and the underdoped materials (cold spots and
well-defined quasiparticles at the same Fermi surface
points as the nodes in the superconducting gap and pseu-
dogap). Thus, it seems that the challenge of finding a
successful microscopic theoretical description of the me-
tallic phase of the cuprates is now extended to the over-
doped regime.
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