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Recent proposals of topological flat band models have provided a new route to realize the fractional

quantum Hall effect without Landau levels. We study hard-core bosons with short-range interactions in

two representative topological flat band models, one of which is the well-known Haldane model (but with

different parameters). We demonstrate that fractional quantum Hall states emerge with signatures of an

even number of quasidegenerate ground states on a torus and a robust spectrum gap separating these states

from the higher energy spectrum. We also establish quantum phase diagrams for the filling factor 1=2 and

illustrate quantum phase transitions to other competing symmetry-breaking phases.
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Introduction.—The fractional quantum Hall effect
(FQHE), one of the most fascinating discoveries in a
two-dimensional (2D) electron gas, has set up a paradigm
to explore new topological phases in other strongly corre-
lated systems. As commonly believed, the FQHE requires
two basic ingredients: single-particle states with nontrivial
topology, and quenching of the kinetic energy compared to
the interaction energy scale. However, despite the seem-
ingly universal theoretical concepts, the FQHE has been
found only in 2D systems under a strong perpendicular
magnetic field, i.e., in which particles move in Landau
levels (LLs). In rotating Bose-Einstein condensate [1]
and optical lattice systems [2,3], researchers have been
interested in generating an artificial uniform magnetic
field; thus, the bosonic FQHE states are expected but still
due to the existence of LLs.

Haldane’s honeycomb lattice model [4] and other simi-
lar lattice models [5,6] have two nontrivial topological
bands characterized by �1 Chern numbers [7,8], demon-
strating the integer quantum Hall effect without LLs.
However, these single-particle bands are still highly dis-
persive; thus, it is unlikely to realize the FQHE in such
systems. Recently, proposals of topological flat bands
(TFBs) [9–11] shed new light on this long-standing and
hard problem. These TFB models belong to the same
topological class as the Haldane model and are distinct
from other flat bands with a zero Chern number [12]. A
series of TFBmodels have been explicitly constructed with
a flatness ratio (the ratio of the band gap over bandwidth)
reaching a high value between 20 and 50 [9,11]. A system-
atic numerical study found both the fermionic 1=3 and 1=5
FQHE of interacting fermions on the checkerboard TFB
model [13] (see also Ref. [10]).

We address the possible bosonic FQHE in TFB models
filled with interacting hard-core bosons, since the TFB will
be more likely realized in optical lattices by manipulating
bosonic cold atoms [14–16]. There is an interesting pro-
posal lately to find such a bosonic FQHE in frustrated
kagome-lattice magnets [17], in terms of the long-sought
chiral spin states [18]. Although TFB models possess both
ingredients to realize the FQHE, quantum phases in such
systems are determined by some competing effects, differ-
ent from a LL problem. The main effects are (i) the lattice
effect and the residual kinetic energy since a TFB is not
strictly flat, (ii) the Berry curvature of a TFB has substan-
tial momentum dependence representing a nonuniform
magnetic field effect in momentum space, and (iii) lattice
symmetry breaking may lead to other conventional ordered
states for hard-core bosons.
In this Letter, we present the exact diagonalization cal-

culations of two representative TFB models with the
nearest-neighbor (NN) and the next-nearest-neighbor
(NNN) repulsions V1 and V2. We find convincing numeri-
cal evidence of both the 1=2 and the 1=4 bosonic FQHE
phases, which are characterized by the formation of a
quasidegenerate ground-state manifold (GSM) with an
even number of states. The GSM carries a unit total
Chern number [19], which is a robust property of the
system protected by a finite energy spectrum gap. We
also determine phase diagrams for our systems and illus-
trate the quantum phase transitions based on the calcula-
tions of the density structure factors and the fidelity [20] of
the ground-state (GS) wave function.
Model Hamiltonians.—The first model is the Haldane

model [4] on the honeycomb (HC) lattice filled with inter-
acting hard-core bosons [21]:
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HHC ¼ �t0
X

hhrr0ii
½by

r0br expði�r0rÞ þ H:c:�

� t
X

hrr0i
½by

r0br þ H:c:� � t00
X

hhhrr0iii
½by

r0br þ H:c:�

þ V1

X

hrr0i
nrnr0 þ V2

X

hhrr0ii
nrnr0 ; (1)

where byr creates a hard-core boson at site r, nr is the boson
number operator, h. . .i, hh. . .ii, and hhh. . .iii denote the NN,
the NNN, and the next-next-nearest-neighbor (NNNN)
pairs of sites, respectively [Fig. 1(a)]. We call this model
a Haldane-Bose-Hubbard model [21].

The second model is a variant version of the Haldane-
Bose-Hubbard model on the 2D checkerboard (CB) lattice
[5,11,22,23]:

HCB ¼ �t
X

hrr0i
½by

r0br expði�r0rÞ þ H:c:�

� t0
X

hhrr0ii
½by

r0br þ H:c:� � t00
X

hhhrr0iii
½by

r0br þ H:c:�

þ V1

X

hrr0i
nrnr0 þ V2

X

hhrr0ii
nrnr0 : (2)

In the exact diagonalization study, we consider a
finite system of N1 � N2 unit cells (total number of sites
Ns ¼ 2� N1 � N2) with basis vectors shown in Figs. 1(a)

and 1(b) and periodic boundary conditions, implementing
translational symmetries, and thus the Hilbert space di-
mension is reduced by a factor about 1=ðN1N2Þ [24]. We
denote the number of bosons as Nb, and the filling factor of
the TFB is thus � ¼ Nb=ðN1N2Þ. In both models, the
amplitude of NN hopping jtj is set as the unit of energy.
Topological flat bands.—On the honeycomb lattice, if

we restrict the model with only NN and NNN hoppings, the
best TFB has a flatness ratio 7 [10]. By allowing the NNNN
hoppings, we numerically found a large class of much
flatter bands with nonzero Chern numbers, e.g., a flatness
ratio of about 50 for the set of parameters, which will be
used here: t ¼ 1, t0 ¼ 0:60, t00 ¼ �0:58, and � ¼ 0:4�.
By using these parameters, the lower TFB is gapped
from the upper quadratic dispersive band by breaking the
time reversal symmetry but preserving other lattice sym-
metries [11,23].
On the checkerboard lattice, we adopt the parameters of

Ref. [11] with an additional minus sign (to make the TFB

as the lower energy band): t ¼ �1, t0 ¼ 1=ð2þ ffiffiffi
2

p Þ, t00 ¼
�1=ð2þ 2

ffiffiffi
2

p Þ, and � ¼ �=4, which leads to a TFB with
the flatness ratio of about 30.
The � ¼ 1=2 phase diagrams.—We first glance at the

spectrum gaps of the two 24-site (2� 4� 3) lattices at the
filling � ¼ 1=2 as shown in Figs. 1(c) and 1(d). E1, E2, and
E3 denote the energies of the three lowest eigenstates. For
the � ¼ 1=2 FQHE phase at the left bottom corners in the
V1-V2 space, there is a GSM with two quasidegenerate
lowest eigenstates, and the GSM is separated from higher
eigenstates by a finite spectrum gap E3-E2 (� E2-E1).
The other rough phase regions for the possible superfluid
(SF), the supersolids (SS1/SS2), and the solid will be
discussed later. We have also obtained numerical results
from larger lattice sizes of 32 (2� 4� 4), 36 (2� 6� 3),
and 40 (2� 4� 5) sites and have confirmed that both
phase diagrams are qualitatively correct.
Low energy spectrum and robust spectrum gap.—We

denote the momentum vector q ¼ ð2�k1=N1; 2�k2=N2Þ
with ðk1; k2Þ as integer quantum numbers. The GSM is
defined as a set of lowest states separated from other
excited states by a finite spectrum gap. If ðk1; k2Þ is the
momentum sector for one of the states in the GSM, we
find that the other state should be obtained in the sector
(k1 þ Nb, k2 þ Nb) [module ðN1; N2Þ]. For Ns ¼ 24, 36,
and 40, the two states within the GSM of a � ¼ 1=2 FQHE
phase are indeed in different momentum sectors: ð0; 0Þ and
ð2; 0Þ for Ns ¼ 24 and Ns ¼ 40, while ð0; 0Þ and ð3; 0Þ
for Ns ¼ 36. For Ns ¼ 32, both Nb=N1 and Nb=N2

are integers; thus, both states within the GSM are in the
ð0; 0Þ sector.
Now we check whether the spectrum gap E3-E2 remains

in the thermodynamic limit. As shown in Fig. 2, when Ns

increases, the spectrum gap E3-E2 does not decrease,
which extrapolates to a finite value at large Ns limit.
Interestingly, the spectrum gap E3-E2 is already quite large
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FIG. 1 (color online). (a) The Haldane model on the honey-
comb lattice and (b) the checkerboard model. The arrow direc-
tions present the signs of the phases �� in the NNN or NN
hopping terms. For the checkerboard lattice, the NNN hopping
amplitudes are t0 (� t0) along the solid (dotted) lines. The
NNNN hoppings are represented by the dashed curves in both
models. (c)–(d) Intensity plots of spectrum gaps in the V1-V2

phase space at � ¼ 1=2 for (c) a 24-site honeycomb lattice and
(d) a 24-site checkerboard lattice. FQHE, SF, SS1/SS2, and Solid
label estimated phase regions inferred from the spectrum-gap
plots and other information (see the text).
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(E3-E2 � E2-E1) for the hard-core boson system with-
out additional interactions (V1 ¼ V2 ¼ 0) [in Figs. 2(a)
and 2(c)] demonstrating the robust 1=2 FQHE. The spec-
trum gap can be slightly enhanced with a small V1 and/or
V2 [Figs. 2(b) and 2(d)].

By comparing the spectrum gap E3-E2 between two
lattices for the V1 ¼ V2 ¼ 0:0 cases in Figs. 2(a) and 2(c),
we notice that the gap E3-E2 in the honeycomb lattice is
obviously larger, which might be due to its larger flatness
ratio. After studies on a fewmore caseswith smaller flatness
ratios 7 [10] and 30 (with t0 ¼ 0:40, t00 ¼ �0:33, and
� ¼ 0:5�) on the honeycomb lattice, we conclude that
the flatter the TFB is, the larger the spectrum gap E3-E2

can be, indicating a more robust FQHE, although the global
structure of the phase diagram does not change much.

Berry curvature and Chern number.—Introducing two
boundary phases �1 and �2 as the generalized boundary
conditions in both directions, the Chern number [7] (also
the Berry phase in units of 2�) of a many-body state is
given by an integral in the boundary phase space [8,19]:
C ¼ 1

2�

RR
d�1d�2Fð�1; �2Þ, where the Berry curvature is

given by Fð�1; �2Þ ¼ Imðh@�@�2 j @�@�1i � h@�@�1 j @�@�2iÞ. For each

GSM of the 1=2 FQHE phase with Ns ¼ 24; 36; 40, the
two states are found to evolve into each other with level
crossings when tuning the boundary phases [Fig. 3(a)],
while for Ns ¼ 32, with both states of the GSM in the
ð0; 0Þ sector, each state evolves into itself when tuning the
boundary phases, and avoided level crossings appear in-
stead [Fig. 3(b)] due to nonzero coupling between the same

momentum states. The GSM in the FQHE phase also has
rather smooth Berry curvature [Fig. 3(c)] and shares a total
Chern number C ¼ 1.
SF stiffness and structure factors.—The 1=2 FQHE

phase on the honeycomb lattice is also distinguished
from the other phases by the featureless intrasublattice
(AA) structure factor SAAðqÞ [Fig. 4(a)]. The solid phase
at a larger V2 is characterized by a ridge with q1 þ q2 ¼
2� in the intersublattice (AB) structure factor SABðqÞ
[Fig. 4(c)] and an almost vanishing SF stiffness �SF

[Fig. 4(e)]. The SF phase at a smaller V2 has the finite
�SF [Fig. 4(e)] while with a weaker ridge in SABðqÞ
[Fig. 4(b)]. At a fixed V1 ¼ 4:0 while tuning V2, a
transition from the FQHE to the SF phase occurs with
the level crossing of E2 and E3 around V2 ¼ 1:0
[Fig. 4(d)], and a transition from the SF phase to the solid
phase near V2 ¼ 2:5 is indicated by a peak of the
GS fidelity susceptibility [20] in Fig. 4(e), where �F ¼
2½1� jh�ðV2Þj�ðV2 þ �Þij�=�2.
Similarly, the 1=2 FQHE phase on the checkerboard

lattice also differs from the other phases by featureless
SðqÞ [Fig. 5(a)], while both SS1 and SS2 phases are char-
acterized by either the q ¼ ð�=2; �=2Þ peak of SABðqÞ
[Fig. 5(b)] or the q ¼ ð�;�Þ peak of SAAðqÞ [Fig. 5(c)].
Along the V1 ¼ V2 line while V1ð¼ V2Þ is being tuned, a
transition can be inferred from the FQHE phase to the SS2
phase around V1ð¼ V2Þ ¼ 1:0 by a sharp peak in the GS
fidelity susceptibility [Fig. 5(d)]. We emphasize that the
firm establishment of the supersolid and solid phases needs
scaling of both �SF and SðqÞ for systems with larger sizes,
e.g., 2� 6� 6 and 2� 8� 8, which are compatible with
the ordering patterns [Figs. 4(f), 5(e), and 5(f)] but are far
beyond the capability of the present exact diagonalization
method.
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FIG. 2 (color online). 1=2 FQHE spectrum gaps versus 1=Ns:
(a)–(b) honeycomb lattice; (c)–(d) checkerboard lattice.
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FIG. 3 (color online). (a)–(b) Low energy spectra versus �1 at
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(c) Fð�1; �2Þ��1��2=2� at 10� 10 mesh points for a GSM
of the 32-site honeycomb lattice.
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FIG. 4 (color online). 32-site honeycomb lattice at � ¼ 1=2.
(a) SAAðqÞ of the FQHE phase; (b) SABðqÞ of the SF phase;
(c) SABðqÞ of the solid phase. (d) Excited energy En � E1 in
various sectors (with d-fold degeneracy) versus V2 at V1 ¼ 4:0.
(e) �SF, S
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susceptibility �F versus V2, at a fixed V1 ¼ 4:0. (f) Illustration
of boson occupancy in the solid phase.
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The � ¼ 1=4 FQHE.—We searched for the � ¼ 1=4
FQHE for both lattice models with the system sizes of
Ns ¼ 24, 32, 40, and 48. In contrast to the � ¼ 1=2 case,
the onset of the 1=4 FQHE needs finite values of either V1

or V2. Examples of the 40-site checkerboard system are
chosen to demonstrate the basic properties of the 1=4
FQHE. For each set of V1 and V2 in Fig. 6(a), there is
clearly a GSM with four states. For each GSM, the four
states evolve into each other when tuning the boundary
phases [Fig. 6(b)], and all four states share a total Chern
number 1. This is concrete evidence of the 1=4 FQHE in
some parameter regions; however, these regions depend on
the lattice sizes more sensitively than those of the 1=2
FQHE. We conjecture that a finite NNNN repulsion V3

may be necessary to get a large and stable parameter space
of the 1=4 FQHE, which will be addressed in a future work.

Summary and discussion.—We consider hard-core bo-
sons in two representative TFB models with NN and NNN

repulsions. We find convincing numerical evidence of both
the 1=2 and the 1=4 bosonic FQHE phases, which are
characterized by a distinctive finite spectrum gap, quasi-
degenerate states in a GSM which can evolve into each
other upon varying boundary phases, smooth Berry curva-
ture, and a topologically invariant unit total Chern number
for the GSM. For both lattices, the 1=2 FQHE phase is
found to occupy a significant space of phase diagrams,
in addition to other conventional ordered phases.
Interestingly, such a 1=2 FQHE is very stable (large spec-
trum gap) for hard-core bosons even without additional
interactions (V1 ¼ V2 ¼ 0), which makes it easier to be
realized by cold atoms in optical lattices.
Further understanding of such a FQHE in TFBs might

involve some recent new ideas. It has been very recently
proposed that there is a possible generic FQHE wave
function construction based on the localized Wannier basis
[25], and the universal quasihole counting based upon the
generalized Pauli principle [26]. However, a direct com-
parison of the numerical wave function and model wave
functions constructed from theWannier basis is still absent.
From a different point of view, a direct calculation of the
topological term in the Feynman path-integral approach
may be essential for revealing the underlying cyclotron
braid picture and its relation to fractionalization [27].
This work is supported by DOE Office of Basic Energy
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