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A dc electric current can be induced in a hybrid semiconductor-superconductor system under

illumination of it by a circularly polarized light with the frequency below the energy of semiconductor

interband transitions. In conditions when the light beam is unable to create real electron-hole excitations,

this phenomenon is reminiscent of the Meissner effect in the static magnetic field. Such an effect can be

employed in systems combining cavity photons and superconducting quantum circuits.
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In noncentrosymmetric semiconductors a circularly po-
larized light can generate the dc electric current [1]. This
so-called circular photogalvanic effect (CPE) is deter-
mined by the second-order response to the electric field
of the incident light. It involves spin polarization of elec-
trons excited from valence bands split by the spin-orbit
interaction (SOI) into bands with the total angular mo-
ments 3=2 and 1=2. The polarized carriers, in their turn,
give rise to the electric current, due to SOI associated with
the lack of inversion symmetry. This phenomenon attracted
much attention recently [2] in connection with perspective
spintronic applications.

As expected, in the case of a dissipative transport in
normal electron systems at stationary conditions, CPE
takes place only if light illumination creates a thermody-
namically nonequilibrium distribution of carriers in a semi-
conductor [3]. For this reason, one cannot expect this effect
to occur in bulk semiconductors, if the frequency of the
incident light is less than the energy gap between the
valence and conduction bands and when indirect phonon
or impurity assisted optical transitions are weak. On the
other hand, in superconductors the flow of electrons might
be created without exciting the system from its thermal
equilibrium. Such a phenomenon becomes possible due to
a macroscopic coherency of the condensate wave function,
so that spacial variations of its phase determine the super-
current. The well-known example is the Meissner effect,
where the static magnetic field cannot produce electron-
hole excitations. It, however, induces a superconducting
electric current. The goal of this Letter is to show that CPE
can be observed in a hybrid superconductor-semiconductor
system even if the incident light does not drive it from the
thermal equilibrium. The electric current is induced due to
changes in the spectrum and wave function of the many-
electron system, rather than from deviation of the elec-
tron’s distribution function from its thermal equilibrium.
Apart from the fundamental interest, this phenomenon has
a practical value when it is employed in nanoscale opto-
electronic devices, because it allows us to reduce dissipa-
tion losses compared to CPE in normal systems. It can also
be an efficient tool to combine microwave electrodynamics

in superconducting quantum circuits [4] with cavity optical
fields coupled to atomic ensembles [5], like the recently
observed [6] interaction of spin ensembles to superconduc-
tor resonators. This suggests evident connections to many
topics of current interest, ranging from atomic and
polaritonic Bose condensates to spintronics and quantum
information processing.
The equilibrium CPE takes place in a hybrid

semiconductor-superconductor system due to the proxim-
ity effect which induces Cooper pair correlations in the
semiconductor. Various hybrid systems displaying the
strong proximity effect have been recently fabricated [7].
In order to demonstrate the main features of CPE and make
our quantitative analysis more transparent, a simple model
will be considered here, where a noncentrosymmetric
semiconductor film is in a planar contact with a supercon-
ductor having the singlet order parameter. The film con-
tains an n-doped quantum well (QW) close to the metal
surface (Fig. 1). Note, that such a sandwich system is now
being considered as a key element of a topological super-
conductor [8].
Let us assume that the circularly polarized light with the

frequency !i is incident onto the semiconductor surface.

FIG. 1 (color online). A sketch of the system. An optically
transparent semiconductor film (top) is in a contact with a
superconductor (bottom). A thin layer between them depicts a
doped quantum well. An incident electromagnetic wave induces
in this well an electric current J perpendicular to the vector
P�E� E�, where E is the electromagnetic field. The light
beam can be also incident from the metal side, if the metal film is
thinner than the skin layer.
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The vector potential of the total electromagnetic field in the
QW region is represented by its Fourier componentsA and
A�, corresponding to frequencies ! ¼ !i and ! ¼ �!i,
respectively. It will be assumed that the electromagnetic
field causes only direct transitions between valence and
conduction bands. Hence, phonon and impurity assisted
indirect transitions, as well as a very small momentum
transfer by photons, will be ignored. The corresponding
matrix elements are given by M�vð!iÞ ¼ ðe=mcÞhk;
�jp �Ajk; vi and M�vð�!iÞ¼ðe=mcÞhk;�jp�A�jk;vi,
where k denotes the two-dimensional wave vector of
QW electrons and p is their momentum operator, � is the
conduction electron spin variable, and v labels the valence
bands. In 3D superconductors the latter are the heavy-hole
and light-hole bands with the total angular moment l ¼
3=2 and its projections �3=2 and �1=2, respectively, plus
the split-off band with l ¼ 1=2, lz ¼ �1=2. In QW the
label v runs also through valence subband indexes, while
only the lowest conduction subband is assumed to be
occupied. In noncentrosymmetric semiconductors SOI
splits the energies of bands with opposite angular mo-
ments. For CPE this splitting is crucial. In the case of an
n-doped QW the conduction band splitting appears to be
most important, although at strong resonance conditions
the hole splitting can be equally important. Therefore, the
latter will be ignored under the assumption that it is much
less than the resonance detuning. At the same time, the
conduction band splitting is determined by the SOI
Hamiltonian Hso ¼ � � hk, where � ¼ ð�x; �y; �zÞ is

the vector of Pauli matrices and hk ¼ �h�k is the spin-
orbit field. The latter will be assumed to have only x and y
components. This takes place for the Rashba field, as well
as for the Dresselhaus field in [001] oriented QW [9].

The semiconductor film contacts 3D metal through a
high enough tunneling barrier, so that the broadening of
QW states due to resonance with 3D continuum is much
smaller than the metal superconducting gap. Therefore, in
the leading approximation, the electric current in QW can
be calculated by ignoring a leaking of electrons into the
metal. The system is assumed to be clean enough, with the
mean electron scattering rate in QW to be much smaller
than the proximity induced energy gap and hk. Hence, the
Green’s functions are diagonal with respect to electron
wave vectors. Considering a thermodynamic equilibrium
with the temperature T, the stationary electric current
density can be expressed in terms of the equilibrium
Keldysh function as

J ¼ � ie

4

X
k;n

Z d!

2�
Tr½jnkðGr

nkð!Þ �Ga
nkð!ÞÞ�

� tanh
!

2kBT
; (1)

where GrðaÞ
nk ð!Þ are the retarded and advanced Green’s

functions. The index n labels the energy bands including
conduction n ¼ c and valence n ¼ v bands. Although the

valence bands are far from the Fermi level, their inclusion
into the current expression is necessary, because they
contribute to important spectral corrections associated
with the coupling of electrons to the electromagnetic field.
The current operator of conduction electrons is given by

j k ¼ @�ck
@k

þ �3
@ð� � hkÞ

@k
; (2)

while the valence-band currents are given by correspond-
ing band velocities @�v;k=@k, where �n;k are the band

energies measured with respect to the chemical potential.
The above expressions are written in the Gor’kov-Nambu
representation, where the new electron destruction opera-

tors ck;n;�;1 ¼ ck;n;� and ck;n;�;2 ¼ cy�k; �n; �� are introduced,

with Pauli matrices �1, �2, �3 acting in the space of indices
1 and 2. As mentioned in Ref. [10], this basis is more
convenient for studying the spin-dependent transport in
superconducting systems.
The next step is to specify important contributions to the

electron self-energy due to the superconducting proximity
effect and interaction with the electromagnetic field.
The proximity effect is represented by a nondiagonal in
the Nambu space contribution to the self-energy of QW
electrons. In the case when parallel to the interface wave
vectors of tunneling particles are conserved, this self-
energy has the form

�rðaÞ
t ð!;kÞ ¼ X

kz

jTk;kz j2GrðaÞ
k;kz

ð!Þ; (3)

where Tk;kz is the tunneling matrix element, with kz denot-

ing the normal component of the wave vector in the metal
side of the interface. Assuming the real order parameter

�0, the Green’s function in (3) can be written as GrðaÞ
k;kz

¼
ð!� �3�k � �z�1�0 � i�Þ�1. For a wideband metal,
where Tk;kz slowly varies near the Fermi level, the self-

energy is expressed as

�rðaÞ
t ð!;kÞ ¼ ��kð0Þ !þ �1�z�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
0 � ð!� i�Þ2

q ; (4)

where �kð�Þ ¼ P
kz
jTk;kz j2�ð�� �kÞ determines a finite

confinement lifetime of QW electrons due to resonance
with the continuum of metal states. The proximity effect is
represented by the second term in the numerator of Eq. (4).
Since we assumed that �k � �0 and the temperature is
low, one can neglect ! in comparison with �0. In this case
the gap� in the spectrum of QWelectrons is given by� ¼
�kð0Þ and it is reasonable to neglect a very weak depen-
dence on k, because the Fermi wave vector is much smaller
in QW than in the metal.
The stationary effect of the electromagnetic field onto

the electron current is determined by the second-order
contribution to the conduction electron self-energy. Its 11
component in the Nambu space is

PRL 107, 146603 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

30 SEPTEMBER 2011

146603-2



�11;��ð!;kÞ ¼ X
v

½M�vð!iÞM�
�vð!iÞG0

vkð!þ!iÞ

þM�vð�!iÞM�
�vð�!iÞG0

vkð!�!iÞ�;
(5)

where the unperturbed valence-band Green’s functions are
G0

vkð!Þ ¼ ð!� �vkÞ�1. From the above definition of

Gor’kov-Nambu operators, �22 can be expressed as
�22;��ð!;kÞ ¼ ��11; �� ��ð�!;�kÞ. The valence-band

wave functions that determine the matrix elements in
Eq. (5) are linear combinations of the functions jJij�i,
where J ¼ X, Y, or Z denote l ¼ 1 orbitals and � is the
spin index. Therefore, depending on the spin variables �
and � in Eq. (5), the electromagnetic field enters as various
combinations of A�A�, A �A�, and AzA

�
z . The circular

photogalvanic effect is associated with P ¼ iA�A�. In
general, its contribution to Eq. (5) has the form [1] CP � �,
where the factor C contains resonance denominators. The
resonance detuning, however, was assumed to be much
larger than � and hk. Since !�maxð�; hk; kBTÞ, a
weak dependence of the self-energy on ! can be ignored
and � becomes

�ð!;kÞ ¼ �3ðP � �ÞCk: (6)

The electric current density will be calculated in the
leading order with respect to �ð!;kÞ. Hence, the corre-
sponding correction to the Green’s function of conduction
electrons in Eq. (1) can be written as

�GrðaÞ
k ð!Þ ¼ G0rðaÞ

k ð!Þ�ð!;kÞG0rðaÞ
k ð!Þ: (7)

The unperturbed functions, in their turn, are given by

G0rðaÞ
k ð!Þ ¼ ð!� �3�ck � � � hk � �rðaÞ

t ð!;kÞ � i�Þ�1;

(8)

where, as was mentioned above, �rðaÞ
t ð!;kÞ ’ ��1�z�.

The Green’s functions of valence electrons in Eq. (1) are
calculated in a similar way. The electromagnetic field
contributes to their self-energy through the same matrix
elements as in Eq. (5), with the intermediate states coming
from the conduction band. It is easy to show that

X
v

Tr½jvkGvkð!Þ� ¼ Tr

�
G0

kð!Þ @�ð!;kÞ
@k

�
: (9)

Let us choose the x axis parallel to the xy projection of
P. For simplicity, the conduction and valence bands are
assumed to be isotropic and SOI is taken in the form of
the Rashba interaction, where hx ¼ �ky, hy ¼ ��kx.

Substituting Eqs. (7) and (9) into Eq. (1), after some
algebra one arrives to Jx ¼ 0 and

Jy ¼
eNF�CkFPx

2

Z
d�

�
�2

Eð�2 � h2Þ tanh
E

kBT

� b

2kBT

�
cosh�2 E

kBT
� cosh�2 �

kBT

��
; (10)

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
, b ¼ ð1þ d lnCk=d lnkÞk¼kF , and

h ¼ �kF. As expected, the equilibrium CPE turns to 0 in
the normal state [3]. One can immediately see it from
Eq. (10) at � ! 0. In the opposite limit of the large super-
conducting gap� 	 kBT the current reaches its maximum
magnitude. In this case cosh�2ðE=kBTÞ in the integrand is
exponentially small and in the leading approximation Jy is

given by

Jy ¼
eNF�CkFPx

2

�
	2 � 1

	
ln

��������
1� 	

1þ 	

��������þ2b

�
; (11)

where 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�2=h2Þp

. We note that the expression in
brackets smoothly varies between 2b� 2, at h � � and
2b, at h 	 �. Therefore, if the light frequency is not too
close to the interband transition energy, one gets b� 1 and
this expression is of the order of unity.
It is important to note that CPE is determined by the

dependence of the electron-photon second-order scattering
on the electron spins. The corresponding self-energy
�ð!;kÞ results in the spin orientation of electrons in the
direction parallel to P and, being combined with SOI, gives
rise to the electric current. A basic distinction of the
equilibrium CPE in superconductors is that at low tem-
peratures there are no single-particle spins to be polarized.
Their role, however, is played by triplet Cooper pairs,
which admix to singlets due to SOI. This situation resem-
bles the effect of the Zeeman interaction, which together
with SOI also leads to the electric current in superconduct-
ing systems [11].
Some comments are needed regarding the vector P in

Eqs. (6) and (10). In the considered geometry (Fig. 1), the
electromagnetic field near the QW is a sum of the incident
and reflected waves. Therefore, in the presence of highly
reflecting metal, this vector is strongly modified with re-
spect to its plane-wave value. Let the incident and reflected
light beams in the x0z plane. Near QW the circularly
polarized incident wave has the electric field components
Ei
z ¼ � sin
E0, E

i
x0 ¼ cos
E0, and Ei

y0 ¼ iE0, where 
 is

the incident angle at the metal-semiconductor interface. In
general, the total electric field E near the interface may be
expressed in terms of the surface impedance Zð!iÞ. From
these well-known expressions [12], the in-plane compo-
nents of the vector P ¼ iðc2=!2

i ÞðE� E�Þ may be easy
calculated:

Px0 ¼ jE0j2 8c
2

!2
i

sin
cos2
Re

�
Z

Z� þ cos


�
;

Py0 ¼ �jE0j2 8c
2

!2
i

sin
cos2


jZþ cos
j2 ImZ;

(12)
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where the terms Z cos
 have been neglected, taking into
account that the impedance of a highly reflective and thick
enough metal film is small. In the range of not too small
frequencies, Z is represented by its Fresnel expression

Zð!iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i!i�sð!iÞ=4��ð!iÞ

p
, where �ð!iÞ and

�sð!iÞ are the metal conductivity and dielectric function
of the semiconductor film, respectively. At !i 	 �0 the
former is almost the same as that of the normal metal. Both
�sð!iÞ and �ð!iÞ depend on the frequency and many other
factors. Therefore, it is useful to consider typical situations.
In the case of a highly reflective metal and �sð!iÞ> 0 we
have ReðZÞ � ImðZÞ. Hence, Eq. (12) gives the vector P
perpendicular to the x0z plane. Since the x axis in Eq. (10)
has been chosen parallel to P, this means that the electric
current will be directed parallel to the x0 axis. At the same
time, for relatively low reflective metals the real and
imaginary parts of Z will be of the same order of magni-
tude. Therefore, the vector P and, hence, the electric
current will be directed arbitrarily in the x0y0 plane, their
directions varying with the light frequency. It should be
noted that a setup different from Fig. 1 might be chosen.
For example, the light beam can be incident from the
superconductor side, penetrating through a semitranspar-
ent film whose thickness is less than the skin-layer depth.
In this case the vector P will have components quite differ-
ent from Eq. (12).

For an order-of-magnitude evaluation of CPE, the factor
C may be approximated by its bulk expression [1], that is
valid far enough from the resonance:

Ck ¼ 2e2p2
cv

3m2c2
!1

�
1

E2
g �!2

1

� 1

ðEg þ�soÞ2 �!2
1

�
; (13)

where Eg is the semiconductor energy gap and �so denotes

the split-off energy. Taking !1 � Eg ��so � 0:4 eV

(InAs), we get C� ðe2=mc2Þðp2
cv=mEgÞ � ðe2=mc2Þ�

ðm=m�Þ, where m� is the effective electron mass. The
Rashba parameter � can vary depending on QW character-
istics. For InAs it can be more than 10�11 eVm [9]. We
take � ¼ 10�12 eVm, fixing thus h around 1 meV at
kF ¼ 106 cm�1, that is much less than the Fermi energy
of QW electrons. At Px � c2jEij2=!2

i and the moderate
electric field strength Ei ¼ 104 V=cm, Eq. (11) gives
Jy � 1 �A=cm. This value will increase considerably at

resonance conditions, by the factor Eg=�res, where �res is a

detuning from the resonance. The above theory restricts
�res by a much larger value than the electron and hole
spin-orbit splittings. In the safe range of relatively large
detunings �10 meV, the resonance enhancement factor is
about 40 for InAs based QW.

A really dramatic enhancement can be reached, if the
incident light intensity is periodically modulated with a
microwave frequency that is close to an eigenfrequency of
a quantum circuit incorporating the considered supercon-
ducting system. In principle, such a modulation could be
provided by the Rabi splitting of an optical cavity mode

strongly coupled to atomic ensembles having spin resolved
electron transitions. In this way CPE gives rise to a non-
linear interaction of optical cavity fieldsþ associated
atomic ensembles with quantum circuits.
In conclusion, the electric current induced by the circu-

lar photogalvanic effect has been calculated in the case of a
superconducting system. It has been shown that, unlike
CPE in a normal system, this effect becomes possible
without driving electrons out of the thermodynamic equi-
librium and without mediation of the impurity or phonon
scattering, as well as intersubband optical transitions. This
phenomenon has been considered for a noncentrosymmet-
ric semiconductor QW, where superconductivity is induced
by the proximity effect and the spin-orbit interaction is
represented by the Rashba term. In the considered setup the
magnitude and direction of the electric current can be
varied by changing the incident light frequency and
polarization.
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