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Nucleation in undercooled Ni is investigated by a combination of differential scanning calorimetry

(DSC) experiments and Monte Carlo (MC) simulation. By systematically varying the sample size in the

DSC experiments, nucleation rates J over a range of 8 orders of magnitude are obtained. Evidence is given

that these rates correspond to homogeneous nucleation. Free energy barriers �G�, as extracted from the

measured J, are in very good agreement with those from the MC simulation. The MC simulation indicates

a nonspherical geometry of crystalline clusters, fluctuating between prolate and oblate shape at a given

size. Nevertheless, the temperature dependence of �G� is well described by classical nucleation theory.

DOI: 10.1103/PhysRevLett.107.145701 PACS numbers: 64.70.D�

Introduction.—Crystal nucleation from an undercooled
melt is one of the fundamental processes during solidifi-
cation [1]. Despite this, even for simple metals such as Ni
or model systems such as hard spheres, nucleation is far
from being well understood at a microscopic level [2–9].

In the framework of classical nucleation theory (CNT)
for homogeneous nucleation, the excess free energy�GðnÞ
to form a spherical nucleus containing n particles is related
to macroscopic thermodynamic properties such as the bulk
chemical potential difference �� between crystal and
liquid and the interfacial free energy � for the formation
of an interface between crystal of density � and melt,

�GðnÞ ¼ �nj��j þ 4�½3n=ð4��Þ�2=3�: (1)

Because of the competition of the negative bulk term and
the positive surface term, the function �GðnÞ exhibits a

maximum at the critical barrier �G� ¼ 16��3

3ð�j��jÞ2 , corre-
sponding to the critical size n� ¼ 32��3=ð3j��j3�2Þ. In
principle, CNT is expected to hold for a macroscopic size
of the nucleus; only then, the surface term can be consid-
ered to be proportional to the macroscopic interfacial free
energy �. However, under experimentally relevant values
for the undercooling �T ¼ Tm � T (with T the tempera-
ture and Tm the melting temperature), the typical size of the
critical nucleus may contain only a few hundred atoms and
one expects significant correction terms to the free energy
balance, as obtained from CNT.

In nucleation experiments of atomistic systems, a direct
determination of �G� is not possible and one usually
extracts the nucleation barrier from the nucleation rate,

J ¼ � exp½��G�=ðkBTÞ� (2)

with kB the Boltzmann factor and � a kinetic prefactor. The
nucleation rate in turn is derived from measurements of
the crystallization temperature. To extract the barrier �G�,

the kinetic prefactor must either be taken from theoretical
estimates [10] or treated as a fit parameter.
In this Letter, we demonstrate for the case of Ni that the

combination of differential scanning calorimetry (DSC)
experiments and Monte Carlo (MC) simulation can reveal
the dependence of �G� on undercooling.
Whereas usually from DSC experiments the nucleation

rate is only determined for one temperature, the data
presented below encompass a range of 8 orders of magni-
tude for the nucleation rate. This range could be only
covered by broad variation of sample masses and observa-
tion time scales. We give evidence that from our experi-
ments we obtain in fact rates J for homogeneous
nucleation. From the measurements of J, nucleation bar-
riers�G� are estimated employing the dependence of�G�
on undercooling as found from the simulation.
The Monte Carlo (MC) simulations are done in con-

junction with umbrella sampling and parallel tempering
[11] using an embedded atom method (EAM) potential
proposed by Foiles (F85) [12] to model the interactions
between the Ni atoms. The barriers �G� obtained from the
simulation are in excellent agreement with those from the
experiment. The simulations allow us to consider a broad
range of undercoolings, 450 K � �T � 250 K, where
�G� increases from about 2 to 11 eV. Although �GðnÞ
cannot be described by Eq. (1), we find that �G� obeys a
temperature dependence based on CNT,

�G� ¼ BT3=�T2: (3)

This expression follows from CNT with the additio-
nal approximations j��j ¼ �Hf�T=Tm [10] and � ¼
�mT=Tm [13]. With the heat of fusion �Hf ¼
17:29 kJ=mol, the solid density � ¼ 8357 kg=m3 at Tm

and the interfacial free energy at the melting point �m ¼
0:302 J=m2 from previous simulations of the F85
model [14], the proportionality factor B amounts to
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2:72� 10�4 eV=K. This value overestimates the one
obtained from a fit to the MC data for �G� by about
30% (see below). Despite this rather good agreement be-
tween MC calculations and CNT, we show that in contra-
diction to CNT the geometry of the crystalline clusters is
nonspherical.

Experiments.—Most of the experimental data for J were
obtained from a statistical evaluation of the crystallization
behavior during continuous cooling. A single Ni sample
was repeatedly heated up to 1773 K and subsequently
cooled down to 1373 K at a heating and cooling rate of
30 K=min in a Setaram Labsys DSC. Only the range of
low nucleation rates (< 10�4 mg�1 s�1) was explored by
isothermal experiments [1]. The samples were embedded
within a small amount of molten glass to remove potent
nucleation sites such as oxides and to prevent contact of the
liquid sample with the crystalline crucible [15]. The system
size was varied by analyzing sample masses from 63 mg
down to 23 �g.

For each sample, up to 500 cycles were performed
yielding 500 different values of undercooling �T
(Fig. 1). Note that for the smallest mass of 23 �g it was
not possible to obtain more than 80 cycles. From the
cooling cycles, we obtained the survivorship function
Fsurð�TÞ, defined as the fraction of experiments in which
crystallization did not yet occur at a given value of �T. By
employing that nucleation follows inhomogeneous Poisson
statistics [16], the nucleation rate J can be directly deter-
mined from the function Fsurð�TÞ ¼ 1� expðR Jð�TÞdtÞ
[15–19]. While the uncertainty of the values from isother-
mal measurements is about 30%, the determination of
nucleation rates from Fsurð�TÞ provides high statistical
accuracy. However, systematic errors were introduced by
the measurement of temperature that was determined with
a relative error of 0.15 K and an absolute error of 2 K.

In Fig. 2, the nucleation rate Jð�TÞ from the different
samples is displayed. The continuous temperature

dependence indicates that only one type of nucleation
site is active throughout the measurements. Moreover,
the smooth transition of J between different sample masses
shows that surface nucleation can be discarded as an active
mechanism (see also supplemental information [20]). This
result is remarkable in the framework of nucleation studies
of high-melting materials [1] since most methodologies
that rely on applying noncatalytic coatings do not work
at high temperatures [1], specifically since the surfaces of
high-melting metals are prone to developing active nuclea-
tion sites due to their high reactivity. In our experiment, the
encasement into a glass serves to isolate the sample from
crystalline container walls and enhances the purity of the
material through oxide dissolution [15].
In most experimental nucleation studies, impurities as

prevalent nucleation sites cannot be completely ruled out.
For the present measurements, the purity of Ni was varied
from 99.999% to 99.6% without any visible influence on
the nucleation rate (Fig. 2). While this is a strong argument
against nucleation on impurities, it is not possible to com-
pletely dismiss heterogeneous nucleation, since the purity
variation does not specifically target any potential nuclea-
tion sites. Furthermore, for Ni of similar purity, a higher
undercooling value has been reported in the literature [21].
Thus, we cannot completely dismiss that in the present
study the obtained undercooling values might be affected
by a constant impurity nucleant of low potency.
Also included in Fig. 2 is a fit according to Eqs. (2) and

(3). The use of this fit implies that the temperature depen-
dence of lnð�Þ is negligible in the temperature interval
1450 K> T > 1410 K. This can be rationalized by recent
measurements of the self-diffusion constant of Ni by qua-
sielastic neutron scattering [22]. The results of the fit are
� ¼ 3:98� 1023 mg�1 s�1 and B ¼ 2:14� 10�4 eV=K.
Simulation.—Umbrella sampling was employed to sam-

ple nucleation processes [5,11,23] at undercoolings
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FIG. 1 (color online). Undercooling �T, as measured from
400 cycles of a 0.23 mg sample. The inset shows the survivorship
function Fsurð�TÞ (right y axis) and nucleation rate J (left y
axis).
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FIG. 2 (color online). Temperature dependence of nucleation
rates from the experiments for different system sizes, as indi-
cated. The solid line corresponds to a fit according to Eqs. (2)
and (3).
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450 K � �T � 250 K. To this end, the Hamiltonian is
modified by the introduction of a harmonic bias potential,
wðnÞ ¼ 0:5kðn� n0Þ2, depending on the size n of the
biggest crystalline cluster in the system. This bias potential
leads to the sampling of the distribution of cluster sizes
around the given value n0. The width of this distribution is
controlled by the spring constant k.

To identify crystalline particles, we use a combina-
tion of local order parameters. One is the number of
particle connections nc [23]. Two particles i and j are
defined as neighbors if the distance between them is
less than 3.36 Å (corresponding to first minimum in
the radial pair correlation function of the liquid). A
pair of neighboring particles is connected if the pro-

duct q6ðiÞ � q6ðjÞ ¼
P

6
m¼�6 ~q6mðiÞ~q�6mðjÞ (with ~q6mðiÞ ¼

�Q6mðiÞ=½P6
m¼�6 j �Q6mðiÞj2�1=2 and �Q6mðiÞ the bond order

parameter introduced by Steinhardt et al. [24]) is larger
than 0.5. The second order parameter is the average

over neighbors of the product defined above, q6q6ðiÞ ¼
ð1=ZiÞ

PZi

j¼1 q6ðiÞ � q6ðjÞ. A particle i is identified as

crystalline if the number of connections, ncðiÞ, is larger
than 7 and the value of q6q6ðiÞ larger than 0.6. These
threshold values have been identified as the boundary
between bulk liquid and crystal in the q6q6 � nc plane.

The Monte Carlo (MC) simulations at constant particle
number N, pressure p (at p ¼ 0) and temperature T are
done in independent windows, specified by different values
of n0. The bias is applied after a trajectory consisting of 5N
trial displacements and two trial isotropic volume moves.
These moves are accepted or rejected in terms of
Metropolis criteria [11]. If the latter trajectory of 5N trial
displacements is rejected the system returns to the configu-
ration from which the trajectory has started. Simulations of
different windows were performed in parallel allowing the
exchange of bias minima between adjacent windows i and
j. This is done every fifth trajectory with probability
expð� �ðwn � woÞÞ where wo ¼ ðki=2Þðni � ni;0Þ2 þ
ðkj=2Þðnj � nj;0Þ2 and wn ¼ ðki=2Þðni � nj;0Þ2 þ ðkj=2Þ�
ðnj � ni;0Þ2 are the total bias energy of the pair before and

after the exchange, respectively. The parameter ki was set
to k ¼ 0:01 eV for all windows and the minima ni;0 were
chosen in steps of 10 to ensure a significant overlap of the
cluster size distributions between neighboring windows.

For each window i, the cluster size distribution PiðnÞ
was used to estimate the excess free energy for the for-
mation of a cluster of size n, �GiðnÞ ¼ �kBT lnPiðnÞ �
wiðnÞ. The results are put in a common frame by adding an
offset to �GiðnÞ in each window and parameterizing the
data by a single polynomial �GðnÞ ¼ P

m
k¼1 akn

k with

m ¼ 10. Note that the error bars for the estimate of
�GðnÞ are less than 2%–3% for all values of n.

Figure 3 shows �GðnÞ at various undercoolings �T ¼
Tm � T and different system sizes N, as indicated. Note
that the melting temperature of our EAM model (F85-Ni)

[12] is at Tm ¼ 1748 K [14,25]. The comparison between
the three system sizes N ¼ 2048, 4000, and 8788 indicates
that the system should be at least a factor of 8 larger than
the cluster size n in order to avoid finite size effects. The
data for�GðnÞ cannot be described by the CNT prediction,
Eq. (1). One reason for this failure of CNT originates from
the nonsperical geometry of the crystalline clusters that
changes with their size n.
Following Linke et al. [26] and Blaak et al. [27], we

have quantified deviations from a spherical cluster shape in
terms of the eigenvalues of the inertia tensor (divided by

the mass), I�� ¼ �P
n
i¼1ðr̂ðiÞ� r̂ðjÞ� � ���

P
�r̂

ðiÞ
� r̂ðiÞ� Þ, with r̂ðiÞ�

the �th component (� ¼ x; y; z) of the distance vector
between particle i and the center of mass of the cluster.
A deformation parameter is defined by d¼1�2e3=
ðe1þe2Þ, with e1, e2 and e3 the eigenvalues of the inertia
tensor. e1 and e2 are chosen such that je1 � e2j � jei � ejj
(i � j). The parameter d vanishes for a sphere, is equal to 1
for the maximum prolate and �1 for the maximum oblate
shape [26].
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FIG. 3 (color online). (a) Excess free energy, �GðnÞ, for the
formation of a cluster of size n for different undercoolings, as
obtained from the MC simulation. Three different system sizes
with N ¼ 2048, N ¼ 4000 and N ¼ 8788 particles are consid-
ered. (b) Distribution fðdÞ of the deformation parameter d for the
cluster sizes n ¼ 200 and n ¼ 1000 at �T ¼ 248 K. The lines
are fits with Gaussian functions to each peak.

PRL 107, 145701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

30 SEPTEMBER 2011

145701-3



Figure 3(b) shows the probability distribution of the
deformation parameter, fðdÞ, for two different cluster sizes
n ¼ 200 and n ¼ 1000 at �T ¼ 248 K. These distribu-
tions are bimodal, displaying peaks for d > 0 and, with a
lower amplitude, for d < 0. Both peaks move to smaller
values of jdj with increasing cluster size. Thus, the clusters
fluctuate between prolate and oblate shape (with a higher
probability for the prolate geometry) and become more
spherical with increasing cluster size. We note that for a
given cluster size n the distribution fðdÞ exhibits only a
very weak dependence on undercooling.

The maxima of the function �GðnÞ correspond to the
nucleation barrier �G�, plotted in Fig. 4 as a function of
undercooling. The dashed line is a fit with Eq. (3). For the
considered range of undercoolings 0:14 � �T=Tm � 0:26,
the data for the largest system size N ¼ 8788 are de-
scribed very well by this fit function. The fit yields
B ¼ 2:21� 10�4 eV=K. We have also used Eq. (3) to
extract �G� from the experimental nucleation rates
(Fig. 2). For each sample at a given mass of the system,
a separate fit was performed. As a result, the different bold
lines in Fig. 4 are obtained; each of them is shown in the
range of �T=Tm where the corresponding nucleation rates
J for a given system mass were measured.

The fit to the simulation data with Eq. (3) gives
B ¼ 2:21� 10�4 eV=K. The value of B varies from
2:0� 10�4 eV=K to 2:3� 10�4 eV=K for the fits to the
experimental data. Using �, Tm and �Hf from the simu-

lation in the CNT expression for B (see above), the latter
values for B give an interfacial tension �m of the order of
0:275 J=m2, thus underestimating the direct measurement
of �m from simulation by about 10% [14].

Conclusions.—Experiments and simulations on the nu-
cleation in undercooled Ni were performed within an over-
lapping range of undercoolings. For this, a consistent deep
undercooling had to be achieved on the experimental side,

whereas on the simulation side, the simulation box had to
be large enough to prevent finite size effects. The experi-
mental nucleation rates were determined solely from the
statistics of crystallization and thus do not rely on any kind
of model. The underlying nucleation mechanism is clearly
not nucleation on the surface and the independence of the
nucleation rate on the sample purity as well as the good
agreement to the simulation suggest that indeed homoge-
neous nucleation was observed.
While the simulations show a deviation of the energy of

formation �GðnÞ from CNT, the actual height of the en-
ergy barrier is in good agreement with CNT. This is
surprising regarding the nonspherical, fluctuating shape
of the clusters. Probably a cancellation of errors leads to
the good quantitative description of �G� by CNT.
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