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We experimentally study one-dimensional, lattice-modulated Bose gases in the presence of an

uncorrelated disorder potential formed by localized impurity atoms, and compare to the case of correlated

quasidisorder formed by an incommensurate lattice. While the effects of the two disorder realizations are

comparable deeply in the strongly interacting regime, both showing signatures of Bose-glass formation,

we find a dramatic difference near the superfluid-to-insulator transition. In this transition region, we

observe that random, uncorrelated disorder leads to a shift of the critical lattice depth for the breakdown of

transport as opposed to the case of correlated quasidisorder, where no such shift is seen. Our findings,

which are consistent with recent predictions for interacting bosons in one dimension, illustrate the

important role of correlations in disordered atomic systems.
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The presence of disorder is inherent to solid state sys-
tems, and it has profound effects on transport in a variety of
contexts, ranging from electron conductivity in metals to
dirty superconductors [1]. Quantum gases in optical latti-
ces [2] can, with a high degree of experimental control,
elucidate the role played by disorder in a number of
physical phenomena. Recently, Anderson localization of
matter waves in disordered potentials has been observed
for noninteracting gases [3,4], and additionally, the ree-
mergence of superfluidity due to repulsive interactions [5].
Discerning the (at times) competing roles of disorder and
interactions is key to the understanding of Bose-glass
behavior [6–8] in strongly interacting disordered systems.
Ultracold atomic systems [9,10] should provide a versatile
test bed to aid in this endeavor [11].

Previous studies of ultracold atoms in disordered poten-
tial landscapes, generated by optical fields, have generally
suffered from strong correlations of the disorder that decay
over length scales greater than either the healing length of
the superfluid or the lattice spacing. This is true for both
speckle potentials [3,10] that are diffraction limited to
structures on the order of the generating laser field’s wave-
length, and quasidisordered bichromatic lattices [4,5,9],
which over large distances exhibit perfect correlations
that may make them rather unsuitable for the realization
of true disorder. To circumvent these limitations, recently it
has been proposed [12–15] to use atomic impurities, which
can be confined to regions much smaller than a lattice
spacing, to act as pointlike defects.

The sudden quench of an atomic impurity field acting on
mobile particles has been proposed [13,15] for the study of
dynamical, out-of-equilibrium response to disorder.
Alternatively, theoretical studies [14,16] have shown that
even a slow ‘‘freeze-out’’ of the tunneling of one species
from an initially homogenous mixture can lead to meta-
stable ‘‘quantum emulsion’’ states, typified by local sepa-
ration between frozen and mobile atoms (for repulsive

interactions) and displaying properties similar to an equi-
librium Bose glass. The study of quantum emulsions may
help shed light on the coherence-loss mechanism in a
number of experiments involving mass-imbalanced atomic
mixtures, both for the boson-boson [17] and boson-fermion
[18,19] cases.
Here, we report on experimental studies of interacting

one-dimensional (1D) Bose gases in the presence of dis-
order. We study the effects of uncorrelated disorder formed
by atoms of an auxiliary spin state ‘‘frozen’’ to sites of an
incommensurate lattice, and compare to the case of corre-
lated quasidisorder from an incommensurate bichromatic
optical lattice. While both disorder types drive strongly
interacting samples into an apparent Bose-glass state, a
large difference is seen for intermediate interactions, where
we find that uncorrelated disorder has a dramatic effect in
driving the system towards an insulating state. Our obser-
vation of enhanced localization for a more random disorder
is consistent with recent theoretical predictions for inter-
acting bosons in 1D [20].
The cartoon in Fig. 1(a) qualitatively depicts our one-

dimensional systems of lattice-trapped bosons with em-
bedded impurities. After creating a homogeneous spin

FIG. 1 (color online). Disordered one-dimensional Bose gases.
(a) To create a disordered impurity field, half the atoms of a
lattice-trapped Bose gas are converted to an auxiliary spin state
and localized to a state-selective incommensurate lattice (dashed
green). (b) Alternatively, a weak incommensurate lattice is
superimposed onto a lattice-trapped Bose gas. In both cases,
the secondary potential (atomic or optical) causes site-dependent
energy shifts "i and site-to-site energy differences �i.
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mixture, we slowly freeze the impurity atoms to a deep
state-selective lattice of incommensurate spacing. For
comparison to a well-studied case of correlated disorder,
we also study bosons in an incommensurate bichromatic
lattice system [4,5,9], as depicted in Fig. 1(b).

In both cases, the dynamics of the mobile atoms may
approximately be described by the Bose–Hubbard

Hamiltonian (BHH) [7,21] Ĥ ¼ �t
P

iðâyi âiþ1 þ âyiþ1âiÞþ
U
2

P
in̂iðn̂i � 1Þ þP

in̂i"i, where t and U are the tunneling

and interaction energies of the mobile atoms, and âi, â
y
i ,

and n̂i ¼ âyi âi are the annihilation, creation, and number
operators for particles at lattice site i. The disordering
potentials will generally have two effects—to slightly
modify the on-site wave functions of the atoms and to
cause random site-dependent energy shifts "i. The first
effect will lead to a spread of site-dependent values for
both t and U (with a multiband treatment necessary for
strong perturbations). The second leads to random site-to-
site energy differences �i ¼ "i � "iþ1, which define the
resonance conditions for single-particle intersite tunneling.
In general, the many-body character will be defined by a
competition between energy scales t, U, and �, with some
dependence on the details of the � distribution [7].

The two disorder potentials of Fig. 1 lead to quite differ-
ent � distributions. In Fig. 2 we plot calculated histograms
for (a) a 50% impurity mixture and for (b) a weak incom-
mensurate lattice (depth s0 ¼ 1, see experimental descrip-
tion below). While both distributions are continuously
filled and extend beyond ��=U, the details differ consid-
erably. The impurity distribution is peaked about�=U ¼ 0
due to adjacent impurity-free sites, while the bichromatic
lattice distribution is peaked at the outer bounds of the
distribution. In Figs. 2(c) and 2(d) we plot the normalized
autocorrelation function �j ¼ h�i�iþjii=h�i�iii. The per-
fectly regular correlations in Fig. 2(d) are a known attribute

of quasidisordered incommensurate lattices [20,22]. In
contrast, for the atomic impurity field—combining the
irregular spacing of bichromatic lattices and the irregular,
probabilistic filling of binary disorder—off-site correla-
tions are strongly suppressed. This difference can have
profound effects, as the localization properties of a system
will generally depend both the strength and correlation
length of the disorder potentials [23]. An extreme case
can be found for noninteracting particles in 1D, where
random disorder leads to Anderson localization for any
finite disorder strength � � 0, while incommensurate lat-
tices induce localization only beyond a critical lattice
depth [4,24].
To briefly describe our experimental system, we begin as

in [25] with an optically trapped Bose–Einstein condensate
of 87Rb atoms. In 200 ms we load an array of isolated, one-
dimensional tubes formed by the intersection of two opti-
cal lattices. These lattices are of period d ¼ �=2 and depth
40ER (with � ¼ 1064 nm, ER ¼ ðh=�Þ2=2m, Planck’s
constant h, m the atomic mass). The atoms are trapped
along the tube axis z by a nearly harmonic potential of
trapping frequency!z=2� ¼ 80 Hz. A lattice along z, also
of period d and with variable depth s (in units of the recoil
energy ER), is smoothly ramped up within 100 ms. This
primary lattice serves to define the sites (index i) and
parameter values (t, U) of the BHH.
Initially, the tubes contain only atoms in the jF;mFi �

j2;�2i hyperfine ground state. To create atomic impurities
as in Fig. 1(a), a fraction (fimp) of the total population of

8� 104 atoms is transferred to the j1;�1i state via a
microwave Landau–Zener sweep. The impurity atoms are
loaded into a completely state-selective lattice [25] along
z in 20 ms. This lattice has spacing d0 ¼ �0=2, with
�0 ¼ 785 nm, and the impurity atoms are deeply localized
at 20E0

R [recoil energy E0
R ¼ ðh=�0Þ2=2m� 1:8ER]. We

typically study an equal mixture (fimp ¼ 0:5) of frozen

and mobile atoms, which we shall refer to as ‘‘the mix-
ture.’’ For the alternate disorder implementation of
Fig. 1(b), we begin with a sample of 4� 104 atoms in
the state j2;�2i (i.e., same number of mobile atoms). We
then ramp up a secondary lattice in 20 ms, of spacing d0
and variable depth s0E0

R, onto the j2;�2i atoms. Because
of the external trapping potential, our system is not homo-
geneous, but can be characterized by a typical central
filling factor of �n� 3 (total) atoms per site.
We begin our investigation into the effects of disorder by

measuring excitation spectra, which relate most directly to
the distribution of site-to-site energy shifts. Along with a
finite compressibility [26], a gapless excitation spectrum is
a characteristic feature distinguishing a disordered Bose
glass state from a (homogeneous) Mott insulator. We mea-
sure the excitation spectra by performing amplitude-
modulation spectroscopy [9,27,28] of the primary
z lattice at driving frequencies !mod=2� [29]. For the
disorder-free case (�i � 0) in Fig. 3(a), with the sample

FIG. 2 (color online). (a),(b) Histograms of calculated
� distributions for the cases of the mixture (assuming either
0 or 1 impurities per site) and an incommensurate lattice of depth
s0 ¼ 1. Both are for a primary lattice depth s ¼ 6 (U=ER ¼ 0:4).
(c),(d) The autocorrelation function �j ¼ h�i�iþjii=h�i�iii of
the � distributions in (a),(b), as a function of the site-to-site
distance j. The averaging is over 1000 sites.
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chosen to be deep into the 1D Mott regime (s ¼ 14, U=
t � 66), the excitation spectrum exhibits resonant struc-
ture. The resonance positions are consistent with the exci-
tation of particle-hole pairs at U=h [27,30] (and 2U=h due
to either higher-order processes or excitation at the edge of
Mott domains [27,30]). In contrast, for both the atomic
impurity mixture [Fig. 3(b)] and for an incommensurate
lattice of depth s0 ¼ 1 [Fig. 3(c)] having comparable
�-distribution bounds, we observe flat excitation spectra
(cf. [9]). These observations are expected [7] for
broadly filled � distributions with bounds �max >U, and
are consistent with the system being in a Bose-glass state
(future compressibility measurements [26] should allow
for the disambiguation between a true Bose glass [7,8]
and a disordered Mott state [31]).

While the observed spectral properties are consistent
with Bose-glass formation, transport measurements are
necessary to confirm insulating behavior. Here, we study
the effects of disorder in the transition region between
superfluid and insulator, determining the critical lattice
depth at which the systems become insulating through
the study of localization and transport. In regard to the
former, the momentum-peak width of a released sample
(related to the inverse correlation length ��1 of the sample
in situ [32]), exhibits a sudden increase accompanying an
abating superfluid fraction and loss of off-diagonal long-
range order [33]. As for the latter, it has been shown
[27,34] that the response to an applied impulse dies away
upon entering the strongly correlated regime, and can serve
as a signature of insulating behavior [10,28].

To study transport, we look at how the system evolves
after an applied impulse. A magnetic-field gradient along z
is pulsed on for a duration of T ¼ 1:2 ms and applies a
variable force F ranging from 0 to Fmax=m ¼ 1:2 m=s2,
resulting in an impulse I ¼ FT. As illustrated in Fig. 4(a),
we characterize the response as a function of I (with slope

�) by monitoring the center-of-mass velocity along z
in time-of-flight absorption images following a brief
(� 1 ms) ramp-off of the z lattice. We access the
momentum-peak width as in [9,27] by releasing the atoms
in time of flight following a 50 �s lattice ramp-up to
s ¼ 20 and a gravitational phase shift along z (without
impulse or lattice ramp-off). We then determine the peak
width � by a fit to the profile of symmetric diffraction
peaks on top of an incoherent background, as shown in
Fig. 4(d).
We find that for the impurity mixture, the mobile atoms

are more easily driven towards insulating behavior. Similar

FIG. 3 (color online). Disappearance of excitation gap due to
disorder. (a) Visibility as a function of amplitude-modulation
frequency (normalized to U=ER ¼ 0:53 for s ¼ 14), in the
absence of disorder for s ¼ 9 and s ¼ 14 (open and filled black
circles). Fit lines are two Gaussians on a linear slope. (b) For
s ¼ 14, with atomic impurities, open purple squares and filled
red squares represent fimp ¼ 0:1 and 0.5, respectively. (c) For

s ¼ 14, with an incommensurate lattice of depth s0 ¼ 1 (orange
triangles) and no impurities. Solid error bars are statistical over
several runs, while dashed are estimated errors for individual
runs (120% of maximum statistical error).

FIG. 4 (color online). (a) The response to impulse is deter-
mined by a straight-line fit (with slope �, normalized to the case
of free atoms) to the dependence of velocity on applied impulse I
(profiles shown for disorder-free and impurity mixture cases;
recoil velocity vR ¼ h=2md). (b) � versus lattice depth s for
bosons without disorder (black circles) and with atomic impu-
rities (fimp ¼ 0:5, red squares). Lines and surrounding shaded

regions are fits to the data with confidence regions (1 s.d.) of a
linearly decaying response, with no response (� ¼ 0) beyond a
depth sc. (c) Similarly, but for an incommensurate lattice
(s0 ¼ 3, green diamonds), with disorder-free data reproduced
for comparison. The inset shows values of sc versus s0 as
determined by fit intercepts. (d) The momentum-peak width �
(1=

ffiffiffi
e

p
half-width) is determined by a symmetric multi-Gaussian

fit to time-of-flight interference patterns. The shaded regions
about v=vR ¼ 0ð�1Þ are used to count N0ð�1Þ for visibility

measurements of Fig. 3. (e) � versus s for 1D bosons without
disorder and for the mixture [colors and symbols as in (b)]. The
straight line for the disorder-free data is a fit of a linear increase
beyond a depth sc. The first few data points for the case of
atomic impurities are connected as a guide to the eye.
(f) Similarly, but for an incommensurate lattice with s0 ¼ 2
(blue triangles) and with disorder-free data reproduced.
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to [28], we determine the critical point at which the atoms
become unresponsive to impulse by fitting a linear decay to
the response � as a function of lattice depth. As shown in
Fig. 4(b), this fit to the transport measurements yields a
critical depth sc ¼ 3:0� 0:5. While we do not fit the peak
width data, a kink near sc � 2 can be observed in Fig. 4(e).
These values are roughly half of those measured for
the disorder-free case, with values of sc ¼ 6:2� 0:5 and
5:7� 0:5 based on impulse response and peak width,
respectively. This value of sc � 6 is close to our expecta-
tions based on the mean Lieb-Liniger parameter [35]
(� ¼ 0:6) of our 1D gases prior to lattice loading, with
an estimate based on the Bose-Hubbard (Sine-Gordon)
model predicting sc ¼ 6:2 (4.7) [28].

For the incommensurate lattice, transport data for s0 ¼ 3
is shown in Fig. 4(c). In this case no shift of the critical
depth is seen, and as shown in the inset, this is the case for
all incommensurate lattice depths considered (s0 � 3,
where we restrict to s0=s < 1 in the transition region to
maintain the perturbative nature of the incommensurate
lattice). The momentum-peak width data mirrors this
lack of a shift of the transition point (inset: for all depths
considered s0 � 2).

While both incarnations of disorder resulted in an ap-
parent Bose-glass state for very deep lattices, a clear
difference was seen in their effect on more weakly inter-
acting samples. In attempting to account for the observed
difference, a natural consideration is the disparity in their
correlations [�j, cf. Figs. 2(c) and 2(d)]. In general, one

expects that the less correlated the disorder, the more
enhanced is the localization [23]. For interacting bosons
in 1D, it has been shown theoretically [20] that the local-
ization transition occurs for a more weakly interacting gas
(larger values of the Luttinger exponent K or lower values
of the Lieb-Liniger parameter � [24]) in uncorrelated
disorder than for correlated disorder. Our observations of
a sizeable shift of the transition point for impurities and a
negligible shift for an incommensurate lattice are thus in
qualitative agreement with expectations based on their
dissimilar correlation properties.

Also relevant to our observations is the reduction of
phase-space density in the presence of localized impurities,
as well as of the atomic density due to the dynamical
formation of impurities from the mobile species. The first
effect has been shown [37] to be responsible for adiabatic
heating and loss of coherence in recent Bose-Fermi mix-
ture experiments [19], due to reduced entropy following a
reduction in effectively occupiable sites, both for attractive
and repulsive interactions. The second effect is more par-
ticular to ‘‘quantum emulsion’’ [14,15,25] experiments.
Here, reduced density leads to more strongly correlated
many-body states in 1D and thus favors increased local-
ization and insulating behavior.

In conclusion, we have observed signatures of Bose-
glass formation in 1D Bose gases with superimposed

disorder, both for atomic impurities and for quasidisor-
dered bichromatic lattices. The two disorder types have
dramatically different effects in the transition region be-
tween superfluid and insulator, with atomic impurity dis-
order inducing localization in much more weakly
interacting gases. Our observation that a more weakly
correlated disorder leads to enhanced localization is in
qualitative agreement with recent theoretical predictions
for interacting 1D boson systems.
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