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We describe how optical dressing can be used to generate band structures for ultracold atoms with

nontrivial Z2 topological order. Time-reversal symmetry is preserved by simple conditions on the optical

fields. We first show how to construct optical lattices that give rise to Z2 topological insulators in two

dimensions. We then describe a general method for the construction of three-dimensional Z2 topological

insulators. A central feature of our approach is a new way to understand Z2 topological insulators starting

from the nearly free electron limit.
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Recently, it has been realized that the electronic struc-
ture of materials is much richer than had previously been
thought. The apparently simple band insulator admits an
intricate topological classification and can behave as a
‘‘topological insulator’’ which is gapped in the bulk but
carries gapless, metallic, states on its surface [1]. The
classic example is the integer quantum Hall effect of a
two-dimensional (2D) electron system in a magnetic field.
In this setting, of 2D with broken time-reversal symmetry
(TRS), band insulators are characterized by the integer-
valued Chern number [2], which determines the number of
metallic surface states. Presently, interest is focused on
settings that preserve TRS, since unlike the integer quan-
tum Hall effect, topological insulators are possible in both
2D and 3D. They are classified by a Z2 invariant [3–5]:
Band insulators either are trivial or are nontrivial and
support a metallic surface state with interesting spin
structure.

While the effects of interactions are rather well under-
stood in the integer quantum Hall effect case, our under-
standing of strong correlations in Z2 topological insulators,
especially in 3D, is yet in its infancy. Ultracold atomic
gases might hold much promise in this direction: They
allow the effects of interactions and other perturbations
to be explored in a controlled way [6,7]. To take advantage
of this in the topological insulator context, it is a crucial
prerequisite to find a way to simulate band structures with
nontrivial Z2 invariant. The purpose of this Letter is to
solve this problem in both 2D and 3D in a simple, generic,
and experimentally feasible fashion.

The standard technique for imposing band structures on
ultracold atom gases is the optical lattice: a periodic scalar
potential formed from standing waves of light [6]. Optical
lattices lead to simple bands with no topological character.
In recent work [8], it has been shown that by using the
optical fields to couple more than one internal atomic level,
leading to effective gauge fields [9], one can generate
‘‘optical flux lattices’’ which break TRS and lead to bands
with a nonzero Chern number. Here we show that, by
suitable optical dressing, one can form optical lattices

that generate non-Abelian gauge fields [7,9], in a way
that preserves TRS and leads to bands with nontrivial Z2

invariant. Our approach is related to methods using optical
fields to simulate the effects of spin-orbit coupling [9,10].
It is, however, very different from existing proposed cold-
atom implementations of Z2 topological insulators [11],
which imprint non-Abelian gauge potentials on atoms in a
deep optical lattice. Our key innovation is to approach the
problem from the opposite, nearly free electron limit. This
allows for large gaps, with the size set by the recoil energy.
Moreover, our proposal can be implemented with a rela-
tively simple laser setup. In addition to its advantages to
cold-atom realizations, our nearly free electron approach
brings a qualitatively new viewpoint to the field of topo-
logical insulators.
We consider an atom with position r and momentum p

and with N internal states which is described by the
Hamiltonian

Ĥ ¼ p̂2

2m
1N þ VM̂ðrÞ; (1)

where V has dimensions of energy. 1N is the identity, while

M̂ðrÞ is a position-dependent N � N matrix acting on the
internal states of the atom. To realize a Z2 topological
insulator requires N to be even, owing to a ‘‘spin’’ struc-
ture, and the Hamiltonian has to be invariant under time

reversal: �̂ ¼ i�̂yK̂ [1]. (We denote by �̂i the Pauli matri-

ces in spin space and by K̂ complex conjugation.) This

requires that M̂ ¼ �̂�1M̂ �̂ . The smallest nontrivial case
has N ¼ 4 with

M̂ ¼ ðAþ BÞ12 C12 � i ~̂� � ~D

C12 þ i ~̂� � ~D ðA� BÞ12

 !
: (2)

Here A, B, and C are real numbers, and ~D ¼ ðDx;Dy;DzÞ
is a real three-component vector. M̂ can be also written as

M̂ ¼ A14 þ B�̂3 þ C�̂1 þ ~D�̂2 ~̂�; (3)
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where �̂j are the Pauli matrices in the block structure of

Eq. (2).
We propose to realize Hamiltonians of this form by

using four internal states of an atom, with the entries in
Eq. (2) provided by optical fields [9]. Many implementa-
tions are possible. In principle, the various transitions
between the internal states could be spectrally resolved,
allowing the freedom separately to introduce coupling
lasers for all transitions (or pairs of lasers for Raman
coupling). Our results are very general and could be ap-
plied to any such implementation. However, to make the
discussion concrete, we shall focus on a particular realiza-
tion in which the coupling laser operates on a single
frequency and therefore has very limited freedom.

The implementation we consider makes use of the prop-
erties of the ground state (1S0 ¼ g) and the long-lived

excited state (3P0 ¼ e) of ytterbium (Yb) or an alkaline

earth atom. The usefulness of these two levels for optically
induced gauge fields was pointed out by Gerbier and
Dalibard [12]: The long lifetime of the excited state re-
duces spontaneous emission; furthermore, there is a con-
venient ‘‘antimagic’’ wavelength �am at which the two
states experience scalar optical potentials of opposite
signs, allowing state-dependent potentials �VamðrÞ to be
implemented. We focus on 171Yb [13], which has nuclear
spin I ¼ 1=2. Then both g and e have two internal states,
and there are four states in total; these will correspond to
the 4� 4 structure in Eq. (2). We consider the magnetic
field to be sufficiently small that the Zeeman splitting is
negligible, and all four e-g transitions involve the same
frequency !0 ¼ ðEe � EgÞ=@. Combining the single-

photon coupling, with electric field ~E ¼ ~Ee�i!t þ ~E�
ei!t,

with the state-dependent potential Vam leads to the optical
potential which in the rotating wave approximation [14] is

VM̂ ¼

�
@

2 �þ Vam

�
12 �i ~̂� � ~Edr

i ~̂� � ~E�
dr �

�
@

2 �þ Vam

�
12

0
BB@

1
CCA; (4)

where � ¼ !�!0 is the detuning. The form of the off-
diagonal term follows from the Wigner-Eckardt theorem,
with dr the reduced dipole moment [15]. A comparison of
Eq. (4) with Eq. (2) shows that the optical coupling (4)

describes a TRS situation provided all components of ~E
have the same phase, in which case ~E can be chosen real.

Two-dimensional systems.—We consider first cases in
which the atoms are tightly confined in the z direction, so
their motion in the x-y plane is (quasi-)two-dimensional. A
Z2 topological insulator can be formed by choosing the
electric field, detuning, and state-dependent potential in
Eq. (4) such that

dr ~E ¼ V½�; cosðr � �1Þ; cosðr � �2Þ�; (5)

@

2
�þ VamðrÞ ¼ V cos½r � ð�1 þ �2Þ� (6)

with �1 ¼ ð1; 0; 0Þ� and �2 ¼ ðcos�; sin�; 0Þ�. The ampli-
tudes are chosen to have a common energy scale V, which
can be interpreted as a measure of the Rabi coupling. This
energy scale should be compared to the characteristic
kinetic energy scale, the recoil energy ER � @

2�2=2m.
The interspecies coupling (5) is formed from three (stand-
ing) waves of linearly polarized light at the coupling
frequency !: two of equal amplitude with wave vectors
in the 2D plane (�1 for y polarization and �2 for z polar-
ization) and one with a wave vector normal to the 2D plane
for x polarization with an amplitude smaller by a factor of
�. Since ! ’ !0, the magnitude of the in-plane wave
vectors is � ’ 2�=�0 with �0 ¼ 578 nm the wavelength
of the e-g transition. The spatial dependence of Vam is set
by a standing wave at the antimagic wavelength �am [12],
which creates a state-dependent potential with j�1þ�2j¼
4�=�am. This fixes the angle � ¼ 2 arccosð��0=�amÞ.
For Yb, �0=�am ’ 1=2 (to an accuracy of about 3%), so
� ’ �2�=3. For simplicity, in all following discussions we

fix � ¼ 2�=3 and define a � 4�=ð ffiffiffi
3

p
�Þ. The optical cou-

pling M̂ then has the symmetry of a triangular lattice with

lattice vectors a1 ¼ ð ffiffiffi
3

p
=2;�1=2Þa and a2 ¼ ð0; 1Þa.

The physics arising from this form of optical coupling is
most clearly exposed by applying a unitary transformation

Û ¼ 2�1=2ð14 � i�̂3�̂2Þ [16] to the dimensionless cou-

pling M̂:

M̂ 0 ¼ ÛyM̂Û¼c1�̂1þc2�̂2�̂3þc12�̂3þ��̂2�̂1: (7)

We have used the shorthand ci � cosr � �i and c12 �
cos½r � ð�1 þ �2Þ�. For � ¼ 0 this matrix decouples into
two 2� 2 blocks, one for each eigenvalue of �̂3, as does
the Hamiltonian since the kinetic energy (1) is diagonal.
Thus, the four-level system decouples into two two-level
subsystems, each experiencing its own form of optical

dressing, c1�̂1 � c2�̂2 þ c12�̂3, differing only in the
sign of the c2 term. This is precisely the optical dressing
required to realize the ‘‘triangular’’ optical flux lattice
described in Ref. [8] (see [17]). This optical flux lattice
causes the atoms to experience a (periodic) effective mag-
netic field with N� ¼ 2 flux quanta in the unit cell. For

V * 0:2ER the lowest energy band (which is twofold
degenerate [8]) is separated in energy from higher bands.
This band is topologically nontrivial, having a Chern num-
ber of �1, with the sign set by the net sign of the coef-
ficients c1, c2, and c12. Since this sign differs for the two
subsystems, their lowest bands have equal and opposite
Chern numbers. (This is required by the fact that these
subsystems are related by time reversal.) Thus, for � ¼ 0
the optical dressing realizes the band structure required to
generate the quantum spin Hall (QSH) effect: There are
two decoupled subsystems, the lowest energy bands of
which have Chern numbers �1. Each of these bands is
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filled when the 2D density of fermions (in that component)

is equal to the magnetic flux density: N�=ð
ffiffiffi
3

p
=2a2Þ ¼

4=ð ffiffiffi
3

p
a2Þ. When both bands are filled, at a total fermion

density of n2D ¼ 8=
ffiffiffi
3

p
a2, the bulk of the system is gapped.

However, there will be a metallic surface state involving
counterpropagating edge modes of opposite spin. This
metallic surface state is the hallmark of the topological
order that characterizes the QSH effect.

The QSH effect is a special case of the Z2 topological
insulator. The Z2 topological insulator, in general, does not
allow separation into two decoupled systems but retains
counterpropagating edge states that are protected only by
TRS. A nonzero value of � introduces a coupling between
the two spin states in a manner that preserves TRS, in direct
analogy to the effects of spin-orbit coupling on the elec-
tronic structure of solids. In Fig. 1, we show the few lowest
energy bands for a small nonzero value of �. (The bands
were calculated by numerical diagonalization in the plane
wave basis.) For � ¼ 0 all bands are fourfold degenerate.
For � � 0 this degeneracy splits into two doubly degener-
ate branches at most wave vectors. However, the fourfold
degeneracy remains at three nonequivalent symmetry
points in k space: �1=2, �2=2, and ð�1 þ �2Þ=2. (The
reciprocal lattice vectors are simply given by �i.)

Because of the coupling between the two subsystems,
the Chern number of a subsystem is no longer well defined,
but the bands still carry a topological character since the
� ¼ 0 case is adiabatically connected to the QSH limit. To
demonstrate this, one has to use a more general Z2 invari-
ant [18]. This invariant takes a particularly simple form for
our system owing to its symmetry under spatial inversion,

P̂: r ! �r. Inversion symmetric insulators, as shown by
Fu and Kane [18,19], are Z2 nontrivial if

Y
n;m¼0;1

Y
�2filled

	ð�Þ
nm ¼ �1; (8)

where 	ð�Þ
nm are the inversion eigenvalues corresponding to

the �th Kramers doublet of bands at the momenta �nm ¼
ðn�1 þm�2Þ=2 (n;m ¼ 0; 1). Evaluating Eq. (8) for our
system, we find that it is indeed in a topological phase: The
points with fourfold degeneracies contribute with (� 1),
while k ¼ 0 contributes with unity, as indicated in Fig. 1.
Although we have shown bands for the special case of a
triangular lattice, our approach is very general: Starting
from an optical flux lattice of any symmetry [8], our
method will lead to a 2D Z2 topological insulator.
Three-dimensional systems.—Our approach has the re-

markable feature that it generalizes naturally to 3D topo-
logical insulators. One simply needs to substitute

c12 ! c12 þ �ð
þ c13 þ c23Þ; � ! � cosð�3 � rÞ;
(9)

where our notation follows that of Eq. (7), and we use�3 ¼
ð0; 0; 1Þ�. That this system is a good candidate for a
topological insulator can be checked by using the parities
as in Eq. (8), but the product is now over eight momenta:
�nml ¼ ðn�1 þm�2 þ l�3Þ=2 (n;m; l ¼ 0; 1) [18].
Evaluating the product shows that the parities are those
of a Z2 topological phase for a large range of parameters.
Importantly, this range includes systems which are insu-
lators as well. This is demonstrated in Fig. 2, where we
show the few lowest energy bands of the model for a point
in the regime where the parity product is negative. A clear
band gap separates the lowest four bands from the higher
bands, showing that the system is an insulator. This exten-
sion to 3D entails additional geometrical constraints on the
wave vectors of the coupling and state-dependent lasers.
For example, for �i ? �j the state-dependent potential cij
has to have periodicity �0=

ffiffiffi
2

p
. For Yb, this differs from

that achieved by the antimagic wavelength �am=2 ’ �0, so

-0.4

-0.2

0

0.2

0.4

E
/E

R

+
+

_ __

(0,1) (0,0) (1,0) (1,1)(1,1) A B C D

A

C

DB

FIG. 1 (color online). Lowest energy bands for the 2D topo-
logical insulator with V ¼ 0:5ER and � ¼ 0:25 for wave vectors
on the perimeter of the parallelogram (shown in the inset) with
corners �nm ¼ ðn�1 þm�2Þ=2 (n;m ¼ 0; 1). Each band is two-
fold degenerate, with fourfold degeneracies at �nm � 0. The
four bands with E=ER & �0:1 have nontrivial Z2 invariant, as
follows from the eigenstate parities (� ) at �nm.
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FIG. 2. Lowest energy bands for the model Eq. (9), for a set of
wave vectors k ¼ P

iki�i with k2 and k3 uniformly spaced
across the Brillouin zone. The parameters are V ¼ 0:9ER,
� ¼ 1:0, and 
 ¼ �0:2. The four bands with E=ER & �0:9
have nontrivial Z2 invariant which, together with the clear band
gap, demonstrates the topological insulator phase. The right-
hand panel shows the density of states.
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in this case there will be an additional state-independent
potential [12]. We have checked that this does not affect
the appearance of the Z2 topological insulator phase for the
lowest 4 bands.

While the robust and simple realization of a 3D topo-
logical insulator is a key result, the choice (9) might seem
fortuitous. The remaining part of this Letter introduces a
constructive approach for finding 3D systems with Z2

nontrivial parities. A hint for this is given by the 2D
case, if one notes that the �nm with negative parities are
precisely the points in momentum space with fourfold
degeneracies. This can be understood by using the follow-
ing symmetry considerations. The Hamiltonian is invariant
under translations by the lattice vectors ai. The associated
reciprocal lattice vectors are simply �j and define the

Brillouin zone for the conserved momentum k. By using
the Bloch decomposition c k ¼ expðik � rÞukðrÞ, the eigen-
value problem at each k point follows from the
Hamiltonian

Ĥ k ¼ ðp̂þ @kÞ2
2m

1N þ VM̂0ðrÞ (10)

acting on lattice periodic functions. Ĥk has half-translation

symmetries T̂1 ¼ �̂2T̂a1=2 and T̂2 ¼ �̂1�̂3T̂a2=2. (Here T̂v

is the operator of translation with the vector v.) At the

special momenta �nm, Ĥ�nm
is invariant under both gener-

alized time-reversal and inversion operators: �̂nm ¼
expð�i2�nm � rÞ�̂ and P̂nm ¼ expð�i2�nm � rÞP̂. The two
symmetries commute; hence, u�nm

and its Kramers partner

�̂nmu�nm
share the same inversion eigenvalue 	nm. From

the fact that T̂2
i ¼ 1 on lattice periodic functions, it follows

that T̂iP̂nm ¼ expð�i�nm � aiÞP̂nmT̂i. This means that at

�10 the application of T̂1, at �01 of T̂2, and at �11 of either

T̂i reverses the inversion eigenvalue: This requires, first,
that the energies are fourfold degenerate and, second, that
for each energy the inversion eigenvalues come in opposite
pairs [20]. This explains why the degenerate points con-
tributed with (� 1) in Eq. (8).

These considerations allow one to construct 3D configu-
rations with Z2 nontrivial parities: Consider a model which
has a reflection symmetry a1 $ a2 and a half-translation
symmetry by d ¼ 1

2 ða1 þ a2 þ a3Þ. (a3 is the third primi-

tive lattice vector.) The reflection symmetry results in
	nm1 ¼ 	mn1, while the half-translation symmetry means
that at �001 and �111 the inversion eigenvalues come in
opposite pairs for each energy, making the energies four-
fold degenerate. Thus, for any 2N doublets we haveQ

2N
�¼1

Q
nm 	ð�Þ

nm1 ¼ 1, so the net parity is
Q

2N
�¼1

Q
nm 	ð�Þ

nm0.

Assume that the model can be written as Ĥk ¼ Ĥð2DÞ
k þ

ðp̂þ@kÞ2z
2m þ Ĥ

ðpertÞ
k . If Ĥð2DÞ

k realizes a two-dimensional topo-

logical insulator with 2N filled Kramers pair of bands, thenQ
2N
�¼1

Q
nm 	ð�Þ

nm0 ¼ �1 for a weak Ĥ
ðpertÞ
k . This means that

the net parity for the lowest 2N Kramers pairs must be

negative: The model is guaranteed to have the parities of a
3D Z2 topological insulator. The choice Eq. (9) is one of
the simplest ones consistent with this strategy.
In summary, we have described how simple forms of

optical coupling can lead to low-energy bands that have
nontrivial Z2 topological invariant, in both 2D and 3D.
Weakly interacting fermions filling these bands will form
incompressible band insulators and exhibit the expected
features of these topological phases: notably, the metallic
surface states. The properties of these surface states could
be probed by studying the (spin-resolved) collective modes
of the atomic gas. Since we work close to the nearly free
electron limit, the required temperature scale is set by the
recoil energy, which is of the order of 0.1 mK in the case of
171Yb, easily accessible in experiments.
The realization of these topological band structures in

ultracold atomic gases will allow the study of interesting
properties that cannot readily be explored in solid state
systems. An important issue concerns the effects of (at-
tractive or repulsive) interactions [21]. Weak interactions
can affect the properties of the surface modes, while strong
interactions may drive the system into strongly correlated
topological phases, either with TRS preserved [22] or with
broken TRS in which case they are related to fractional
quantum Hall states. Furthermore, cold-atom implementa-
tions will allow studies of the effects of tuning the nature of
the bands, inducing transitions in their topology.
Introducing a phase difference between the electric fields
in (4) breaks TRS; this could be used to study quantum
phase transitions out of the Z2 topological insulator phase,
into (for example) integer quantum Hall states.
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arXiv:1008.5378 [Rev. Mod. Phys. (to be published)].
[10] A.M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu,

Phys. Rev. Lett. 92, 153005 (2004); T. D. Stanescu, C.
Zhang, and V. Galitski, Phys. Rev. Lett. 99, 110403
(2007); Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman,
Nature (London) 471, 83 (2011).

PRL 107, 145301 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

30 SEPTEMBER 2011

145301-4

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://arXiv.org/abs/1008.2026
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.79.195321
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/PhysRevLett.106.175301
http://arXiv.org/abs/1008.5378
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevLett.99.110403
http://dx.doi.org/10.1103/PhysRevLett.99.110403
http://dx.doi.org/10.1038/nature09887


[11] N. Goldman et al., Phys. Rev. Lett. 105, 255302 (2010); A.
Bermudez et al., Phys. Rev. Lett. 105, 190404 (2010).

[12] F. Gerbier and J. Dalibard, New J. Phys. 12, 033007
(2010).

[13] S. Taie et al., Phys. Rev. Lett. 105, 190401 (2010).
[14] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,

Atom-Photon Interactions (Wiley, New York, 1992).
[15] L. D. Landau and E.M. Lifshitz, Quantum Mechanics

(Pergamon, London, 1958).
[16] The time-reversal operator �̂ is invariant under Û.
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