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1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 19 July 2011; published 28 September 2011)

A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation

instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The

phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate

that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by

dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in

less than four e foldings, independent of beam-plasma parameters.
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Plasma-based accelerators have attracted considerable
attention owing to the ultrahigh field gradients sustainable
in an electron plasma wave, enabling compact accelerators.
The electric field amplitude of the electron plasma wave
(space-charge oscillation) is on the order of E0 ¼
cme!p=e, or E0½V=m� ’ 96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0½cm�3�p

, where !p ¼
ð4�n0e2=meÞ1=2 is the electron plasma frequency, n0 is
the ambient electron number density, me and e are the
electron mass and charge, respectively, and c is the speed
of light in vacuum. This field amplitude can be several
orders of magnitude greater than conventional accelera-
tors. Electron plasma waves with relativistic phase veloc-
ities may be excited by the nonlinear ponderomotive force
of an intense laser [1] or the space-charge force of a
charged particle beam, i.e., a plasma wakefield accelerator
(PWFA) [2,3]. In 2006, high quality 1 GeVelectron beams
were produced using 40 TW laser pulses in cm-scale
plasmas [4]. In 2007, a 42 GeV electron beam in a meter-
long plasma was used to double the energy of a small
fraction of electrons on the beam tail by the plasma wave
excited by the beam head [5]. These experimental suc-
cesses have resulted in further interest in the development
of plasma-based acceleration as a basis for future linear
colliders [6,7].

It has recently been proposed to drive a plasma accel-
erator with a highly relativistic proton beam, such as those
available at CERN (European Organization for Nuclear
Research) [8,9]. In general, exciting plasma waves requires
a drive beam density profile with frequency components at
the plasma frequency, i.e., a beam density longitudinal
scale length on the order of the plasma wavelength �p ¼
2�=kp ¼ 2�c=!p, or �p½�m� ¼ 3:3� 1010=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n½cm�3�p

.

Compact, high-gradient accelerators require high
plasma density, and therefore require short drive beams,
e.g., �p � 100 �m for n0 � 1017 cm�3. Generating short

proton beams (or proton beams with spatial structure at �p)

is challenging, and it has been proposed to rely on a beam-
plasma instability to modulate the beam at �p, driving a

large amplitude plasma wave [10]. The self-modulation of
the beam occurs through coupling of the transverse wake-
field with the beam radius evolution. Periodic regions of
focusing and defocusing modulate the beam density at �p,

driving a larger plasma density modulation that further
focuses the beam periodically. For beams long compared
to �p, where self-modulation occurs, the instability is

enabled by the drive beam dynamics, and therefore the
wakefield properties will be strongly affected by the drive
beam dynamics.
An important quantity characterizing the performance of

a plasma accelerator is the phase velocity vp of the plasma

wave. For vp < c, a highly relativistic electron will outrun

the plasma wave and phase slip from the accelerating to the
decelerating phase region of the plasma wave. This limits
the electron energy gain to �W � �2

pðEz=E0Þmec
2 after

acceleration over a dephasing length Ld � �2
p�p, where

Ez is the electric field amplitude of the plasma wave and

�p ¼ ð1� v2
p=c

2Þ�1=2. For a plasma accelerator driven by

a short (< �p) intense laser pulse, vp can be relatively low

(�p � 10� 100) and dephasing can limit the energy gain

[11]. For a PWFA driven by a short (< �p) highly relativ-

istic beam, vp can be sufficiently high so that dephasing is

not an issue.
In this Letter we calculate the self-modulation of particle

beams in plasma, including the properties of the excited
plasma wave. In particular, we show that the phase velocity
of the plasma wave excited by self-modulation is greatly
reduced from the velocity of the drive beam. The phase
velocity is determined by the growth of the instability and
the beam-plasma dynamics. A similar effect occurs in self-
modulated laser-driven plasma waves [12–14]. Analytic
solutions for the growth rate and phase velocity in the
long-beam regime are derived and compared to numerical
solutions of the envelope equation for the particle beam.
Owing to the low phase velocity of the plasma wave, the
maximum energy gain in such a self-modulated beam-
driven accelerator will be severely limited by dephasing.
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The wake generated by a relativistic particle beam driver
moving through an initially neutral plasma can be calcu-
lated using the cold plasma fluid and Maxwell equations.
Here we consider a drive beam consisting of particles with
charge �e and mass Mb. In the linear wake regime, the
normalized electron plasma density perturbation �n=n0 ¼
ðn� n0Þ=n0 < 1 driven by a beam with density nb < n0 is

ð@2� þ k2pÞ�n=n0 ¼ �k2pnb=n0; (1)

where the � corresponds to a negatively or positively
charged particle beam. A highly relativistic beam is as-

sumed with Lorentz factor � ¼ ð1� �2
bÞ�1=2 � 1, and the

quasistatic approximation is taken such that the plasma
fluid quantities are functions of the comoving variable
� ¼ z� �bt. The beam-driven longitudinal electric field
Ez and transverse fields Er and B� are [15]

ðr2
? � k2pÞEz=E0 ¼ �kp@��n=n0; (2)

ðr2
? � k2pÞðEr � B�Þ=E0 ¼ �kp@r�n=n0: (3)

The transverse beam-driven wakefield Eq. (3) is coupled to
the envelope equation for the beam [16]

d2R

dz2
� 	2n

4�2R3
¼ � 1

�R

me

Mb

hkprðEr � B�Þ=E0i; (4)

where R ¼ hr2i1=2 is the rms beam size, 	n ¼ �½hr2i�
hðdr=dzÞ2i � hrdr=dzi2�1=2=2 is the normalized transverse
emittance in cylindrical geometry, and the brackets indi-
cate an average over the transverse beam distribution.

For simplicity, we consider a beam with a flat-top radial
profile, nb ¼ ½nb0r2b0=r2b�fð�Þ�ðrb � rÞ, where nb0 is the

initial peak density, f is the normalized longitudinal pro-
file, � is the Heaviside function, rbð�; zÞ is the beam
radius, and rb0 ¼ rbð�; z ¼ 0Þ is the initial beam radius.
Using the solution to Eqs. (1) and (3) for a flat-top radial
beam profile in Eq. (4) yields the envelope equation for the

beam radius rbð�; zÞ ¼
ffiffiffi
2

p
R at any slice �

d2rb
dz2

� 	2n
�2r3b

¼ � 4k2br
2
b0I2ðkprbÞ
�rb

Z �

1
d� 0 sin½kpð� � � 0Þ�

� fð� 0ÞK1ðkprbð� 0ÞÞ=rbð� 0Þ; (5)

where k2b ¼ 4�nb0e
2=Mbc

2 is plasma wave number of the

beam. Here, Im and Km are the modified Bessel functions
and we assumed the initial radius rb0 is independent of � .
Equation (5) describes the coupled beam evolution and
wakefield excitation.

Consider a small perturbation about the long beam
(where variation in the longitudinal beam profile may be
neglected) equilibrium radius r0, satisfying 	2nkp ¼
4�k2br

3
0K1ðkpr0ÞI2ðkpr0Þ. Assuming a small perturbation

about this equilibrium, rb ¼ r0 þ r1 with jr1=r0j � 1
and rb0 ¼ r0, Eq. (5) yields the evolution of the beam
radius perturbation

�
d2

dẑ2
þ 4
2

�
r1 ¼ 2�

Z �

1
d�̂ 0 sinð�̂ � �̂ 0Þr1ð�̂ 0Þ; (6)

with the constants � ¼ 4I2ðkpr0ÞK2ðkpr0Þ and


2 ¼ 2K1ðkpr0Þ
�
4
I2ðkpr0Þ
kpr0

þ I3ðkpr0Þ
�
; (7)

and the normalized variables �̂ ¼ kp� and ẑ¼kbz=ð2�Þ1=2.
In the limit of a narrow beam kpr0 � 1, �’1�ðkpr0Þ2=6,
and 
2’1þðkpr0Þ2½C��1=4þ lnðkpr0=2Þ�=2, where

C�’0:577 is the Euler-Mascheroni constant. Equation (6)

may be analyzed in several regimes. The most relevant
regime for plasma accelerators based on self-modulated
drive beams is the strongly coupled (or long-beam, early-

time) regime valid for �̂� ẑ.
Consider a slowly varying envelope, such that r1 ¼

r̂ expðikp�Þ=2þ c:c: with j@� r̂j � jkpr̂j, and assume the

strongly coupled regime where the growth length of the

instability is short compared to �1=2k�1
b , such that j@ẑr̂j �

2
jr̂j. In this regime, after applying the linear plasma wave
operator, Eq. (6) becomes

ð@�̂@2ẑ þ i�Þr̂ ¼ 0; (8)

which describes the evolution of the slowly varying am-
plitude of the beam radius perturbation and may be solved
using standard Laplace transform techniques. With the
initial conditions r̂ðz; � ¼ 0Þ ¼ �r�ðzÞ, r̂ðz¼0;�Þ¼�r,
and @zr̂ðz ¼ 0; �Þ ¼ 0, the solution to Eq. (8) can be
expressed as

r̂=�r ¼ X1
n¼0

ði�j�̂jẑ2Þn
n!ð2nÞ! : (9)

The solution to Eq. (8) may also be evaluated asymptoti-
cally and has the form

r1¼�r
31=4

ð8�Þ1=2N
�1=2eN cos

�
�=12�kp��N=

ffiffiffi
3

p �
; (10)

where the number of e foldings is

N ¼ 33=2

4

�
�
nb0me

n0Mb�
k3pj�jz2

�
1=3

: (11)

Note that the instability growth rate Eq. (11) [and the beam
envelope equation, Eq. (5)] differ from that found in
Ref. [10]. Behind the modulated beam the growth is given
by Eq. (11) with j�j ¼ Lb, where Lb is the bunch length.

Hence, for fixed rb0, the growth scales asN / ðnb0LbÞ1=3 /
Q1=3

b , where Qb is the beam charge.

Figure 1 shows the beam radius modulation rb=r0 ¼
1þ r1 versus kp� , after propagating kpz ¼ 28 000 (red

curve) and kpz ¼ 25 000 (blue curve), obtained from

numerical solution of Eq. (5) for a proton beam initially
in equilibrium rb0 ¼ r0 with beam-plasma parameters
nb=n0 ¼ 0:008, � ¼ 480, and kpr0 ¼ 1. The dashed

curves are the envelope of the linear asymptotic solution
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Eq. (10). Figure 1 shows the growth versus distance behind
the head of the beam (at kp� ¼ 0) and versus propagation

distance. Also shown is the shift in phase of the modulation
versus propagation distance, resulting in a reduced phase
velocity. Physically the peaks of the focusing force (trans-
verse wakefield) lag behind (shifted in phase by 2�=3) the
peaks of the beam density. This phase shift results in the
peaks of the beam density modulation moving back toward
the peaks in the focusing force, reducing the phase velocity
of the modulation with respect to the beam velocity.

The above solution Eq. (9) assumed jkpr̂j � j@� r̂j, or
1 � jk�1

p ð@�NÞj. This condition may be approximately

expressed as �̂ � ẑ, which will be satisfied for long beams
sufficiently early in the beam propagation. It was also
assumed that j@ẑr̂j � 2
jr̂j, which is satisfied provided

�̂ � ẑ is satisfied. The above analysis is also based on
linear theory, and nonlinear effects (i.e., when r1 � r0 or
Ez � E0) may saturate the instability.

The beam radius perturbation r1 ¼ r̂ expðikp�Þ=2þ c:c:

modulates beam density nb ’ nbðr0Þð1� 2r1=r0Þ þ
nb0r1�ðr0 � rÞ. This beam density modulation drives
a modulation in the electron plasma density
n̂ expðikp�Þ=2þ c:c:, via Eq. (1), i.e., @�n̂ ’ �ikpnb0�
½�ðr0 � rÞ � �ðr0 � rÞr0=2�ðr̂=r0Þ. The plasma density

modulation drives the accelerating wakefield Ez=E0 ¼
Êz expðikp�Þ=2þ c:c:, via Eq. (2), i.e., ðr2

? � k2pÞÊz ¼
�ik2pn̂=n0. For the same initial conditions as above, the

solution for the accelerating wakefield in the long-beam
regime is

Ê z ¼ �HRðr; r0Þ nb0n0

�r

r0
j�̂j X1

n¼0

ði�j�̂jẑ2Þn
ðnþ 1Þ!ð2nÞ! ; (12)

where HRðr;r0Þ¼1�kpr0K1ðkpr0ÞI0ðkprÞ�I0ðkprÞ�
K0ðkpr0Þr20=2 for r� r0 and kpr0I1ðkpr0ÞK0ðkprÞ�
I0ðkpr0ÞK0ðkprÞr20=2 for r > r0. In the asymptotic limit,

the accelerating wakefield has the form Ez=Ezðz ¼ 0Þ ’
37=4ð32�Þ�1=2N�3=2 expðNÞ cosðc Þ, where the number of e
foldings of growth of the accelerating wake is given by
Eq. (11) and the phase is

c ¼ �

4
� kp� � 3

4

�
�
k2bkp
�

j�jz2
�
1=3

: (13)

The phase velocity of the accelerating wake is �p ¼
�@tc =@zc ¼ @�c =ð@� þ @zÞc ’ 1� @zc =@�c . Using

the phase Eq. (13), the phase velocity is �p ’ 1þ
k�1
p @zc ¼ 1� ð2=33=2ÞðN=kpzÞ. The phase velocity of

the self-modulated beam-driven wakefield is less than the
beam velocity �b ’ 1, varies along the beam � and during
propagation z. Asymptotically, the Lorentz factor of the
phase velocity is

�p ¼
�
�n0Mb

�nb0me

z

j�j
�
1=6

: (14)

Note that, behind the modulated beam the phase velocity is
given by Eq. (14) with j�j ¼ Lb.
Figure 2 shows the normalized Lorentz factor of the

phase velocity of the accelerating wakefield

�p½�ðkb=kpÞ2j�̂j=��1=4 versus normalized propagation

distance ð�j�̂jÞ1=2ẑ. The solid curve in Fig. 2 is obtained

from the series solution Eq. (12), �p ¼ 1�
jk�1

p @z½arctanð=Êz=<ÊzÞ�j, the dashed curve is the asymp-

totic solution Eq. (14), and the dots are from the numerical
solution (with the proton beam parameters � ¼ 480,
nb0=n0 ¼ 0:008, kpr0 ¼ 1, and kpLb ¼ 715) of the enve-

lope equation Eq. (5). Figure 2 indicates that there is a
minimum phase velocity. The minimum phase velocity can
be estimated by using Eq. (12). The minimum phase ve-

locity occurs at ð�j�̂jÞ1=2ẑ ’ 1:72, with

0 2 4 6 8 10 12 14
0

1

2

3

4

γ p[ν
|k pζ

|(k
b/

k p)
2 /

γ]
1/

4

(ν|k
p
ζ|k

b
2/2γ)1/2z

FIG. 2 (color online). Normalized phase velocity of accelerat-
ing wakefield �p½�ðkb=kpÞ2j�̂j=��1=4 vs normalized propagation

distance ð�j�̂jÞ1=2ẑ in the long-beam regime: solid (black) curve
is the series solution Eq. (12), dashed (red) curve is the asymp-
totic solution Eq. (14), and dots (blue) are from the numerical
solution of the envelope equation Eq. (5).
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FIG. 1 (color online). Beam radius modulation rb=r0 vs kp�
with beam-plasma parameters nb=n0 ¼ 0:008 (proton beam),
� ¼ 480, and kpr0 ¼ 1 (and rb0 ¼ r0), obtained from numerical

solution of Eq. (5), at kpz ¼ 25 000 (blue curve) and

kpz ¼ 28 000 (red curve). Dashed curves are the envelope of

the asymptotic linear solution Eq. (10).
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�min ’ 1:05

�
�n0Mb

�nb0mekpj�j
�
1=4

: (15)

As shown in Fig. 2, after reaching �min, the phase velocity

grows slowly as the beam propagates �p / z1=6

[cf. Equation (14)]. For example, consider a wake driven
by a 450 GeV proton beam (� ¼ 480), with r0 ¼ 180 �m,
Lb ¼ 12 cm, and 1011 particles (i.e., near the parameters
of the CERN Super Proton Synchrotron). Operating
at n0 ¼ 1015 cm�3, corresponds to nb0=n0 ¼ 0:008,
E0 ¼ 3 GV=m, kpr0 ¼ 1:0, kpLb ¼ 715, and � ¼ 0:88.

For this example, �min ’ 21 behind the drive beam after
z ’ 17 cm (i.e., 	 160�p) of propagation.

With the phase velocity of the self-modulated wake
determined, the dephasing length may be calculated. For
a linear wake, the dephasing length is the propagation
distance required for an ultrarelativistic particle �b ’ 1
to slip �p=4 (or a wake phase of �=2) with respect to the

plasma wave. Assuming the phase velocity is well-
approximated by the asymptotic solution in the strongly-
coupled regime Eq. (14), the dephasing length is

Ld ¼ ð2�=3Þ3=2ð�k2bkpj�ij=�Þ�1=2. Including the early-

time response via Eq. (12), the dephasing length is

Ld ’ 4:9ð�k2bkpj�ij=�Þ�1=2; (16)

where �i is the injection position of the witness bunch
(e.g., initially at a peak of the accelerating field). For a
witness bunch injected behind the drive beam, j�ij ¼ Lb.
This reduced dephasing length will greatly limit the energy
gain of a witness electron beam trailing the drive bunch.
For example the number of e foldings of the self-
modulation instability that have occurred at the dephasing
length Eq. (16) is Nðz ¼ Ld; �iÞ ’ 3:8. Note that the num-
ber of e foldings at a dephasing length Nðz ¼ LdÞ is
independent of injection location and the beam-plasma
parameters. After a dephasing length, the witness beam
will move into a decelerating phase, and then into a defo-
cusing phase of the plasma wave (which will scatter the
beam transversely).

The number of e foldings required to reach an interest-
ing accelerating gradient will be determined by the
instability seed. Assuming the beam is Gaussian, the
seed generated by the wake of the long-beam envelope
is �nseed=n0 � ðkp�zÞ exp½�ðkp�zÞ2=2�nb0=n0, which

vanishes for kp�z � 1, where �z is the rms bunch length.

One possibility to seed the modulation is using a leading
intense short-pulse laser or short electron bunch that drives
a wake. Consider a seed Ez;seed=E0 ’ 10�2 (i.e., Ez;seed ’
30 MV=m at n0 ¼ 1015 cm�3) driven by a resonant laser
pulse (requiring a 93 TW, 130 J, 0:8 �m wavelength pulse
with spot size kprL ¼ 2 and laser strength parameter

a0 ¼ 0:165). The peak electric field after a dephasing
length is Ez 	 106 MV=m, and the energy gain of a trail-
ing electron beam after a dephasing length (	 34 cm)
is 	 10 MeV, assuming a wakefield driven by a

self-modulated 450 GeV proton beam with nb0=n0 ¼
0:008, kpr0 ¼ 1, kpLb ¼ 715, and n0 ¼ 1015 cm�3.

Improved efficiency may be possible by tapering the
plasma density, i.e., increasing the background plasma
density to reduce the plasma wavelength, thereby increas-
ing the phase velocity [17], although variation of the
plasma density may affect the instability growth.
Alternatively the accelerator may use a staged approach,
where a long plasma region self-modulates the drive beam
until saturation of the instability, followed by a second
stage where a witness bunch would be injected following
the modulated drive beam. Such a two-staged approach
could potentially be limited by the hose (or transverse two-
stream) instability [18], which grows in the long-beam
limit with a comparable growth rate �N. This implies
that to drive large amplitude accelerating fields via the
self-modulation instability without hosing requires
strongly seeding the self-modulation instability.
The long-beam, early-time regime described above

will be valid for ẑ � �̂ . After sufficiently long propaga-
tion distances, or for sufficiently short beams, the instabil-
ity may enter a weakly-coupled regime where the insta-

bility growth length is long compared to �1=2=kb. The
instability will transition to the weakly-coupled regime

after a propagation distance approximately ẑ� �̂ , or, using
Eq. (11), after approximately N � kp� . For long beams

kp� � 1, nonlinear effects will typically appear before the

instability enters the weakly coupled regime.
In this Letter we have calculated the beam self-

modulation instability growth rate, in the long-beam re-
gime, including the phase dependence. The phase velocity
of the accelerating wakefield was calculated and shown to
be significantly less than the drive beam velocity. The
dephasing length was calculated, and a witness beam will
reach dephasing in less than four e foldings, independent of
beam-plasma parameters. This indicates that the energy
gain in a plasma accelerator driven by a self-modulated
PWFA in a homogeneous plasma will be limited by
dephasing.
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