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We study the spatiotemporal dynamics of a crack front propagating at the interface between a rigid

substrate and an elastomer. We first characterize the kinematics of the front when the substrate is

homogeneous and find that the equation of motion is intrinsically nonlinear. We then pattern the substrate

with a single defect. Steady profiles of the front are well described by a standard linear theory with

nonlocal elasticity, except for large slopes of the front. In contrast, this theory seems to fail in dynamical

situations, i.e., when the front relaxes to its steady shape, or when the front pinches off after detachment

from a defect. More generally, these results may impact the current understanding of crack fronts in

heterogeneous media.
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Understanding the fundamental problem of how materi-
als break or debond from a substrate is of great importance
for a wide range of applications. It has been recognized that
rupture processes are highly dependent on microstructures
like impurities, voids, grain boundaries or fibers which can
make the material either weaker or tougher [1]. Whereas
many studies have considered averaged or macroscopic
quantities such as the fracture energy, we focus here on
the local properties of a front propagating in a disordered
medium. In this context, a crack front can be modeled as a
line having a nonlocal elasticity [2] with a noisy forcing
(see, e.g., [3] for a review). This general approach has led
to numerous theoretical and numerical results [4–6], but
only a single setup [7,8] has enabled experimental studies
which raised the issue of controlling the noise imposed by
a heterogeneous material composition. Here we address
this control, focusing on the scale of a single heterogoneity.
Inspired by experiments on wetting contact lines [9–13] in
which the heterogeneities are imposed through the pattern-
ing of the substrate, we designed a setup which has allowed
us to investigate the motion of a crack front interacting
with defects of tunable shape and size. Surprisingly, the
fundamental question of how a crack front interacts with
isolated defects has attracted little attention [14,15]. In this
Letter, we characterize the kinematics of the crack front
and then present results concerning the linear and non-
linear spatiotemporal response of the front when it crosses
a single defect.

In the present experiments, a silicon elastomer block is
peeled from a glass substrate in a beam cantilever configu-
ration (Fig. 1). The crack front is defined as the frontier
between bonded and debonded regions. The glass substrate
can be made chemically heterogeneous in order to spatially
modulate the fracture energy, �, or the toughness, Kc, of
the interface. It is fabricated using soft lithography tech-
niques. A primer and a photoresist (Ti-Prime and AZ5214,
MicroChems) are successively spin coated on the substrate

which is then exposed to UV light through a patterned
mask (Selba, CH). Exposed regions are dissolved in a
solvent (MIF780, MicroChems) while protected ones re-
main on the substrate. A chromium layer of typical thick-
ness 2 nm is then deposited using a Joule effect evaporator.
The underlying resin is dissolved in an acetone bath soni-
cated for 15 s. A last step consists in cleaning the substrate
with a Piranha solution (H2SO4 : H2O2, 2:1) for 1 h, rins-
ing it with deionized water and drying it with N2. All steps
are undertaken in a clean room environment. The defect
consists of a glass strip surrounded by a layer of chromium
[Fig. 1(b)]. Its width ranges from 10 to 103 �m while its
length is at least 4 times larger than its width.
The elastomer is a crosslinked PolyDiMethylSiloxane

(PDMS Sylgard184, Dow Corning) with a Young’s modu-
lus E ’ 2 MPa. It is prepared by mixing an oligomer
together with a silicon oil. The mixture is centrifugated,
degased for 2 h under mild vacuum and poured in a mold
covered with a clean glass slide. It is cured in an oven at

FIG. 1. Sketch of the experiment. (a) Side view. A silicon
elastomer block is peeled from a patterned glass substrate by
means of a translation stage imposing a deflection, d. (b) Top
view. The substrate can be made chemically heterogeneous.
Here, a glass strip of width 2a is surrounded by chromium.
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75� C for at least 2 h. The resulting crosslinked PDMS
block is then demoulded without removing the glass slide
from it, so that the interface remains clean. Blocks are
10 mm thick, 76 mm long, and either 22 or 72 mmwide. To
enhance optical contrast between bonded and debonded
regions, an additional 0.5 mm thick layer of a black cross-
linked PDMS (Sylgard170, Dow Corning) is spread uni-
formly on the uncovered side of the block. The protective
glass slide is removed and the patterned one is laid without
pressure on the elastomer with a slight angle that is de-
creased progressively enabling an adhesive front to propa-
gate slowly along the whole surface. Using this protocol,
no air bubble nor dust is trapped (this has been checked by
inspection with a microscope). The sample is left with the
PDMS downside for at least 12 h prior to peeling. A longer
waiting time does not change the results.

The glass substrate is clamped on an aluminum frame. A
deflection d is applied to the edge of the elastomer using
two cylinders rigidly attached to a translation stage driven
by a stepper motor (NanoPZ, Newport) (Fig. 1). An addi-
tional cylinder is glued to the elastomer using a
crosslinker-liquid PDMS mixture, thus providing two
cross-cylinder contacts with reduced friction and without
induced tension. The sample is lit up from above with a
LED ring mounted on a binocular and pictures (3872�
2576 px2) are taken with a digital camera (Nikon, D300).
The crack front appears as a bright line (see inset of Fig. 3)
and its position hðx; tÞ (see Fig. 1) is determined using a
home made algorithm based on detecting pixels of highest
intensity. Knowing hðx; tÞ, one can define the mean posi-
tion of the front lðtÞ ¼ hhðx; tÞix as the spatial average of h
along the transverse direction x. Depending on the optics
used, binocular (MZ16,Leica) or macro objective (Nikon),
1 pixel corresponds to either 2 �m or 15 �m, respectively.

Before investigating the interaction of the front with
defects, we characterized our system by measuring the

fracture properties of PDMS-glass and PDMS-chromium
interfaces. We performed creep tests using homogeneous
substrates, by imposing a constant deflection (reached in
50 s) and recording the evolution of hðx; tÞ over longer
times. Figure 2 shows typical results for PDMS-glass and
PDMS-Chrome interfaces. The crack appears to reach
asymptotically an equilibrium position leq with a mean

velocity vðtÞ ¼ dl=dt which decreases with time. For the
PDMS-glass interface, vðtÞ is found to have a power-law
dependence with an exponent �1:3� 0:05. For the
PDMS-chromium interface, vðtÞ has on average a power-
law decrease, however, with superimposed fluctuations.
The latter are presumably due to daily temperature varia-
tions or to small imperfections in the chromium layer.
Such observations can be rationalized à la Maugis [16].

Let G be the energy release rate, i.e., the energy dissipated
during fracture per unit of newly created fracture surface
area. In our case, this energy is stored in the elastic bending
of the cantilever, so that it is proportional to its bending

FIG. 2 (color online). Creep tests for homogeneous PDMS-glass and PDMS-chromium interfaces. At t ¼ 0 s, a deflection of 7 mm
is applied for the glass interface and 0.180 mm for the chromium one. (a) and (b) Crack front velocities versus time. Insets: position of
the crack l versus time (insets). For the glass interface (a), the velocity exhibits a well-defined power-law tail of the form t�1:3. In
dashed lines are shown power-law curves t�1 and t�1:5 as a guide for the eyes. For the chromium interface (b), a power-law t�1:8 is
shown as a guide for the eye. (c) Energy release rates G versus time (left y axis for glass and right y axis for chromium). Note the
difference in scale between the two y axes.

FIG. 3. The steady profile of a crack front (appearing as the
bright line) in the presence of a single or a double glass strip
(lighter gray areas) of width 2a ¼ 20 �m. (a) The crack front
has an infinite slope at the edge of the strip (nonlinear regime),
but the tails are well fitted by Eq. (3) (dashed line). Inset: zoom
on the tip of the front. (b) Interaction of the front with two
parallel strips. The distance between the strips midlines is
30 �m. The predicted shape of the crack front position with
two strips assuming a linear superposition of the solutions of
Eq. (3) (dashed line) differs significantly from the real profile.
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stiffness and to the curvature squared, GðlÞ ¼
3=8Eh3ðd=l2Þ2, where E is the Young’s modulus and h
the thickness of the elastomer. The time evolution of G is
shown in Fig. 2(c) for two typical experiments with
glass (GG) and chromium (GCr) interfaces. At equilibrium
(v ¼ 0 and l ¼ leq), the energy release rateGðleqÞ becomes

equal to the fracture energy �, so that � ¼ 3=8Eh3ðd=l2eqÞ2.
Measurements for different realizations yield �G in the
range 6–8 J �m�2 for PDMS glass and a much smaller
value �Cr in the range 0:08–0:2 J �m�2 for PDMS chro-
mium. For both interfaces, the range of fracture energies is
found to be rather large, but can be explained when con-
sidering the error made on the measure of l, of the order of
2 mm, and mainly due to the front small curvature. SinceG
depends strongly on l, any error on l will thus lead to errors
on G of about 20% and 40% for the glass and chromium
interfaces, respectively. Out of equilibrium (v > 0), the
following equation of motion has been proposed [16]:

v ¼ c

�
G

�
� 1

�
1=n

; (1)

where c is a velocity characterizing dissipative processes
and n is the stretch exponent. Close to equilibrium and
using the values ofG and � given above, we expand Eq. (1)

as v ’ 41=ncð1� l=leqÞ1=n, whose solution scales as v�
t�1=ð1�nÞ. For a PDMS-glass interface, the stretch exponent
n ¼ 0:25� 0:01 is in the same range as found in previous
studies [16–18], with c� 50 �m � s�1. If we force the
power-law fit for PDMS chromium, we find similar values,
n ’ 0:4 and c� 20 �m � s�1. Note that this behavior
clearly differs from the exponential relaxation expected
in the case of a linear equation of motion (n ¼ 1).

We now operate at velocities much smaller than c, so
that the energy release rate is close to the fracture energy
(G ’ �). We note that the following experiments have a
typical duration of 2 h smaller than the daily fluctuations
observed for chromium. We begin by considering the
profile of the crack front when it propagates in steady state
with a heterogeneous interface. Using a glass strip of width
2a ¼ 20 �m surrounded by chromium (Fig. 1), we can
compare our experimental results with theoretical predic-
tions. Adhesion contrast between PDMS glass and PDMS
chromium interfaces is so high that the crack front remains
pinned back on the chromium strip (Fig. 3). As a result, the
PDMS block is highly deformed almost exhibiting infinite
slopes at both edges [Fig. 3(a)]. We argue that, even in a

regime of high toughness contrast ( �Kc

KCr
c
> 1), a linear

theory might help predicting the shape of the front. The
linear perturbation of the height �hðxÞ ¼ hðxÞ � l, with
l � hhðxÞi, is governed by [2]:

�Kc

KCr
c

¼ ��hðxÞ
2l

þ 1

2�
PV

Z �hðx0Þ � �hðxÞ
ðx0 � xÞ2 dx0; (2)

where PV is the principal value of the integral, �Kc ¼
ðKG

c � KCr
c Þ is the toughness contrast and KCr

c (KG
c ) is the

toughness of a PDMS-chromium interface (PDMS-glass
interface). Recall that the toughness Kc is related to the
fracture energy through Irwin’s formula � ¼ K2

c=2E.
When j�hj � l, the solution of Eq. (2) is

1

H
�hðxÞ ¼

�
1þ x

a

�
ln

��������1þ
x

a

��������þ
�
1� x

a

�
ln

��������1�
x

a

��������;

(3)

where H ¼ 2a��1�Kc=K
Cr
c is a characteristic length

scale. With 2a ¼ 20 �m, Eq. (3) provides a reasonable
fit of the tails of the profile giving H ¼ 19 �m. However,
the resulting value of �Kc=K

Cr
c ’ 3 is smaller than the one

computed from the measured fracture energies �Kc=K
Cr
c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�G=�Cr
p � 1 in the range 5–9. If we measure the size of
the tip [Fig. 3(a), inset) defined as �hðaÞ ¼ 2 ln2H, we find
�hðaÞ ’ 80 �m yielding �Kc=K

Cr
c ’ 9, in better agree-

ment with the ratio of fracture energies. With two strips,
the linear superposition of the solution does not allow us to
recover the shape of the whole front [Fig. 3(b)]. As a partial
conclusion for steady fronts, a linear theory provides a
good description of the tails of the front whereas nonlinear
effects seem to become important when the slope is * 1.
We nowmove on to the dynamics of the front just after it

leaves the glass strip (see Fig. 1), investigating the relaxa-
tion of the front shape towards a straight line in the
homogeneous chromium interface (Fig. 4). The velocity

FIG. 4 (color online). (a) Relaxation of the crack front during
the first 100 s following its detachment from the glass strip.
Experimental data (	) are fitted by Eq. (4) (dashed line). For
clarity, fronts are shown at intervals of 20 s. (b) and (c) Fitting
parameters W (d), H (j), and L (m) of Eq. (4) as a function of
time. Hm and L ¼ 2:2 are roughly constant whereasW increases
nonlinearly with time. Inset: Log-Log plot of W versus t.
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at the center of the front (x ¼ 0) is about 2 �m � s�1 and is
much faster than the tail velocity which is about 0:3 �m �
s�1 at jxj � 2 mm. The front spreads as its typical width
WðtÞ increases with time. This phenomenology is reminis-
cent of the dynamics of a wetting contact line just after it
detaches from a defect [11]. Here, Eqs. (1) and (2) deter-
mine completely the dynamics of the front. When Eq. (1)
can be linearized around a constant velocity of the front,
the dynamical equation is exactly the same as in wetting
[11] and its solution takes the form

�hðx; t > 0Þ ¼ Hm ln
x2 þWðtÞ2

L2
; (4)

where Hm is the typical front height and L a large scale
cutoff. We used this equation to fit the shape of the front
(Fig. 4). In the case of wetting Hm and L are constant,
whileW ¼ utwhere u is a characteristic velocity of waves
along the front. Here Hm and L are indeed constant, but
surprisingly, W is found to increase nonlinearly with time

(� t1=2). This discrepancy might be ascribed to the intrin-
sic nonlinear nature of the equation of motion (1), which
cannot be linearized for small velocities.

Finally, we come back to the complex depinning event.
Figure 5 (inset) shows the necking of the tip of the crack
front just after the end of the strip (horizontal dashed line).
This necking increases until the two parts of the front
merge and leave an isolated contact area behind. This
corresponds to the formation of a PDMS filament attached
to the end of the glass strip. We measured the size �X of
the neck as a function of�t ¼ tr � t, where t is time and tr
the instant of merging, for various values of the width of
the strip (Fig. 5). The whole data collapse on a master

curve �X=2a ¼ 1:17ð�t=�Þ0:47, where � ¼ 2a=v with v
the mean velocity of the front evaluated from the tails.
In summary, we have designed an experiment where a

crack front propagates in a controlled interface. In the
presence of a defect, the steady profile of the crack front
is captured by a standard linear nonlocal elastic equation
except when the slopes are large (close to a defect). We
identified sources of nonlinear behavior in the dynamics of
the crack, during the spreading of a relaxing bump and
pinch-off following the detachment from a defect. More
fundamentally, the equation of motion appears to be in-
trinsically nonlinear and can lead to a complex dynamics as
already reported in viscoelastic materials [19] and volume
contraction induced fracturing in brittle materials [20,21].
These observations might have an impact on assumptions
used in the modeling of the propagation of fronts in dis-
ordered media.
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FIG. 5 (color online). Pinch-off from a strong defect.
Evolution of the size of the neck �X as a function of �t ¼
tr � t for different widths 2a of the glass strip : 31 (d), 63 (h),
256 (5), 511 (4), 1020 �m (
). t is time and tr the instant of
topological change. Insets: picture of the crack front near the end
of the glass strip; all data collapse on a master curve: �X=2a ¼
1:17ð�t=�Þ0:47, where � ¼ 2a=v with v the mean velocity of the
front evaluated from the tails.
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