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The general relativistic (Mercury-type) periastron advance is calculated here for the first time with

exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless

black-hole binaries with mass ratios 1=8 � m1=m2 � 1 and compare with the predictions of several

analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and,

surprisingly, so also the predictions of self-force theory [replacing m1=m2 ! m1m2=ðm1 þm2Þ2]. Our
results can inform a universal analytic model of the two-body dynamics, crucial for ongoing and future

gravitational-wave searches.
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Introduction.—The anomalous rate of Mercury’s perihe-
lion advance was originally recognized in 1859 by
the astronomer Urbain Le Verrier. For the first time,
Newton’s law of universal gravitation could not be recon-
ciled with observation. Treating Mercury as a test body in
free fall in the gravitational field generated by the massM�
of the Sun, Einstein derived the lowest order (weak-field)
general relativistic angular advance per orbit [1]

�� ¼ 6�GM�
c2að1� e2Þ ; (1)

where a and e are the semimajor axis and eccentricity of
Mercury’s orbit, respectively. Equation (1) perfectly ac-
counted for the observed discrepancy of�4300 per century,
thus providing the first successful test of general relativity.
More recently, the same effect—but with a much larger
amplitude, of the order a few degrees per year—has been
observed in the orbital motion of binary pulsars [2]. Today,
the exciting prospects of observing gravitational waves
from the inspiral and merger of compact binaries, by using
interferometric detectors like LIGO or Virgo, provide a
modern context for the problem of relativistic periastron
advance and a motivation to go far beyond Einstein’s
weak-field test-particle approximation.

In this Letter, we restrict our attention to binaries com-
posed of two black holes. Their orbital dynamics can be
analyzed by using several approximation schemes in gen-
eral relativity: post-Newtonian expansions [3], black-hole
perturbation theory [4], and the effective-one-body model
[5]. It can also be studied by using fully nonlinear numeri-
cal relativity (NR). While NR can now routinely perform
accurate binary black-hole simulations [6], approximation
methods remain valuable given the high computational
cost of these simulations and their restricted utility when

the mass ratio is too extreme. It is important to assess the
predictions of the various approximations against the NR
benchmark, since (i) it allows crucial cross-validation
tests, (ii) it helps delineate the respective domains of
validity of each method, and (iii) it can inform the devel-
opment of a universal semianalytical model of the binary
dynamics.
Neglecting radiation reaction, the motion of two non-

spinning black holes on a generic eccentric orbit involves
two frequencies: the radial frequency (or mean motion)�r

and the averaged angular frequency �’ defined by

�r ¼ 2�

P
; �’ ¼ 1

P

Z P

0
_’ðtÞdt ¼ K�r; (2)

where P is the radial period, i.e., the time interval between
two successive periastron passages, _’ ¼ d’=dt is the
time derivative of the orbital phase ’ðtÞ, and ��=ð2�Þ ¼
K � 1 is the fractional advance of the periastron per radial
period. In the circular orbit limit, the relation between
K ¼ �’=�r and �’ is coordinate invariant (for a large

class of physically reasonable coordinate systems) and
therefore provides a natural reference for comparing be-
tween the predictions of the analytical and numerical
methods currently available.
In this Letter, we present new accurate NR simulations

starting at lower orbital frequencies than in previous work
[7–9]. We outline the respective computations of the in-
variant relation Kð�’Þ in numerical relativity, post-

Newtonian theory, the effective-one-body formalism, and
black-hole perturbation theory. We then perform an exten-
sive comparison which, for the first time, (i) encompasses
all of these methods and (ii) focuses on the orbital dynam-
ics of the binary, rather than the asymptotic gravitational
waveform. We also discuss the implications for the
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modeling of coalescing compact binaries. (We henceforth
set G ¼ c ¼ 1.)

Numerical relativity.—The periastron advance of non-
spinning black-hole binaries was estimated for the first
time in general relativistic numerical simulations in
Ref. [10]. In the present work, we improve considerably
on the accuracy of these calculations. Our results are based
on new and longer simulations of the late stage of the
inspiral of black-hole binaries, using the Spectral
Einstein Code SpEC [11,12], with mass ratios q � m1=m2

between 1:1 and 1:8 and eccentricities e in the range
½0:0015; 0:023�. These runs are summarized in Table I
and will be described in detail elsewhere [9,13].
(Reference [10] discusses the definition of e in these
simulations.)

We compute �’ and �r by using the orbital frequency

�ðtÞ extracted from the motion of the apparent-horizon
centers (in harmonic coordinates): Let ciðtÞ be the coor-
dinates of the center of each black hole, and define their
relative separation r ¼ c1 � c2; then � ¼ jr� _rj=r2,
where the Euclidean cross product and norm are used.
The frequency �ðtÞ can be written as the sum of a secular
piece (given by the average frequency �’) and a small

oscillatory remainder—both of which drift slowly in time
due to radiation reaction. To compute KNR at some coor-
dinate time T, we choose a time interval of width
W � 2�=�ðTÞ, centered on T, and fit �ðtÞ to the model
�ðtÞ¼p0ðp1� tÞp2 þp3 cos½p4þp5ðt�TÞþp6ðt�TÞ2�,
where the pi’s are fitting parameters. We then write
�’ðTÞ ¼ p0ðp1 � TÞp2 and �rðTÞ ¼ p5, compute the ra-

tio KNRðTÞ ¼ �’ðTÞ=�rðTÞ, and hence obtain KNR as a

function of �’. Finally, we fit KNRð�’Þ to a smooth

quadratic polynomial by using

KNR ¼ ½a0 þ a1ðm�’Þ þ a2ðm�’Þ2�KSchw; (3)

where m ¼ m1 þm2 is the total mass of the binary. The
results of the fits are given in Table I. For convenience,
the numerical periastron advance KNR is normalized by the
test-particle result KSchw, which is known in closed form as

[14,15] KSchw ¼ ð1� 6xÞ�1=2, where x ¼ ðm�’Þ2=3 is the
usual dimensionless coordinate invariant post-Newtonian
parameter.
The variance in the numerical data for various window

sizesW provides an estimate of the error in KNR. We point
out that the finite (nonzero) eccentricity in the NR simula-
tions introduces a small error, since we are interested in the
e ! 0 limit. However, as the leading-order result (1) sug-
gests, and calculations at higher post-Newtonian (PN)
orders confirm, this error scales like e2, which in our
simulations is always & 5� 10�4 and decreasing mono-
tonically with time.
The numerical data form the basis for our comparisons.

We will now discuss the different approximation schemes
in turn, summarizing the results in Figs. 1 and 2 (showing
K as a function of frequency for two fixed mass ratios) and
Fig. 3 (showing K as a function of mass ratio for a given
frequency).
Post-Newtonian theory.—Einstein’s result (1) was gen-

eralized to arbitrary masses m1 and m2 by Robertson [16].
Following the discovery of binary pulsars in the 1970s, an
improved modeling of the orbital dynamics of these com-
pact binaries was required, leading to the extension of this
1PN result to 2PN order [14]. [As usual, we refer to nPN as
the order equivalent to terms Oðc�2nÞ in the equations
of motion beyond the Newtonian acceleration.] More re-
cently, the need for extremely accurate gravitational-wave
templates modeling the inspiralling phase of coalescing
compact binaries motivated the computation of the equa-
tions of motion through 3PN order. These results allowed
also the calculation of the periastron advance at the 3PN
accuracy for eccentric orbits [17].

TABLE I. Simulation parameters. Here q � m1=m2, m �
m1 þm2, d is the initial coordinate separation, e is the initial
eccentricity, and Norb is the total number of orbits in the
simulation. The fitting parameters fa0; a1; a2g [cf. Eq. (3)] are
computed for the restricted frequency range �i � �’ � �f.

q d=m e Norb a0 a1 a2 m�i m�f

1 19 0.021 34 0.9949 0.589 �79:1 0.0111 0.0312

2=3 18 0.023 27 0.9950 0.573 �75:9 0.0129 0.0316

1=3 14 0.002 29 0.9821 1.692 �87:1 0.0181 0.0313

1=5 14 0.008 23 0.9879 1.154 �62:8 0.0183 0.0361

1=6 13 0.015 20 0.9890 1.071 �57:0 0.0204 0.0333

1=8 13 0.0015 24 1.0028 �0:099 �26:8 0.0197 0.0355
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FIG. 1 (color online). The periastron advance K of an equal
mass black-hole binary, in the limit of zero eccentricity, as a
function of the orbital frequency �’ of the circular motion. The

NR results are indicated by the cyan-shaded region. The PN and
EOB results are valid at 3PN order. The lower panel shows the
relative difference �K=K � ðK � KNRÞ=KNR.
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For quasicircular orbits, combining Eqs. (5.8) and (5.25)
of Ref. [17], we obtain the 3PN-accurate expression
of K as

K3PN¼1þ3xþ
�
27

2
�7�

�
x2

þ
�
135

2
�
�
649

4
�123

32
�2

�
�þ7�2

�
x3þOðx4Þ: (4)

The symmetric mass ratio � � m1m2=m
2 is such that

� ¼ 1=4 for an equal mass binary and � ! 0 in the ex-
treme mass-ratio limit. The term / �2 in Eq. (4), which is a
3PN effect, contributes less than 1% to K3PN, for all
mass ratios. This suggests that the exact K may be well

approximated by a linear function of �. Figures 1–3 show a
good
agreement between the 3PN and NR results for q ¼ 1, with
& 1% relative difference even at the high-frequency end.
However, the performance of the PN approximation dete-
riorates with decreasing q.
Effective-one-body (EOB) method.—The EOB formal-

ism [5] maps the conservative part of the PN dynamics of
a compact binary system onto the dynamics of a test
particle of reduced mass � � m� ¼ m1m2=m in a time-
independent and spherically symmetric effective metric
ds2eff ¼ �Aðr; �Þdt2 þ Bðr; �Þdr2 þ r2ðd�2 þ sin2�d’2Þ,
which reduces to the Schwarzschild metric of a black hole
of mass m in the limit � ! 0. The expansions of the
EOB potentials A and �D � ðABÞ�1 in terms of the
Schwarzschild-like coordinate u¼m=r are known through
3PN order as [5,18] A¼1�2uþ2�u3þð943 � 41

32�
2Þ�u4þ

Oðu5Þ and �D ¼ 1þ 6�u2 þ ð52� 6�Þ�u3 þOðu4Þ, re-
spectively. To enforce the presence of an EOB innermost
stable circular orbit (ISCO), Ref. [18] suggested replacing
A by its Padé approximant of order ð1; 3Þ, AP ¼
ð1þ auÞ=ð1þ buþ cu2 þ du3Þ, whose Taylor series co-
incides with the known 3PN result.
From the recent analysis of slightly eccentric orbits in

the EOB formalism [19], the effective-one-body prediction
for the periastron advance in the limit of zero eccentricity
is given by

KEOB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0
PðuÞ

�DðuÞ�ðuÞ

s
; (5)

where A0
P ¼ dAP=du and� ¼ APA

0
P þ 2uðA0

PÞ2 � uAPA
00
P

vanishes at the EOB ISCO. To obtain the invariant relation
KEOBðxÞ, one needs to compute u given x, which we do
here numerically (for any given �) from the expression of
the EOB Hamiltonian restricted to circular orbits, and
Hamilton’s equations of motion [19]. The resulting curves
are displayed in red in Figs. 1–3. For q ¼ 1 and 2=3, the
EOB(3PN) prediction (5) is within the numerical error up
to m�’ � 0:022. For all the other mass ratios, the EOB

(3PN) result is within the numerical error at all frequen-
cies. When using the EOB potential AðuÞ with 4PN and
5PN terms calibrated to a set of highly accurate unequal
mass nonspinning binary black-hole simulations [20], the
EOB prediction is within the numerical error at all fre-
quencies and for all mass ratios considered. This remark-
able agreement could be attributed in part to the ‘‘polelike’’
structure at the EOB ISCO in Eq. (5), which is absent from
the standard PN result (4).
Perturbation theory and the gravitational self-force.—

Extreme mass-ratio inspirals of compact objects into mas-
sive black holes, for which m2 � m1, are important
sources of low-frequency gravitational radiation for future
space-based detectors. Modeling the dynamics of these
systems requires going beyond the geodesic approxima-
tion, by taking into account the backreaction effect due to
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FIG. 2 (color online). The same as in Fig. 1, but for a mass
ratio q ¼ 1=8. Note that for an orbital frequency m�’ � 0:03,

corresponding to a separation r� 10m, the periastron advance
reaches half an orbit per radial period.

-0.024

-0.018

-0.012

-0.006

0

EOB
GSFν
PN

0 0.5 1

-0.08

-0.04

0

0.04

Schw
GSFq

0 0.2 0.4 0.6 0.8 1
q

δK
/K

FIG. 3 (color online). The relative difference �K=K ¼
ðK � KNRÞ=KNR as a function of the mass ratio q, for
m�’ ¼ 0:022. The PN and EOB results are valid at 3PN order.

The shaded area marks the error margin of the NR data. The
results are qualitatively identical and quantitatively similar for
other values of �’.
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the interaction of the small object with its own gravita-
tional perturbation. This ‘‘gravitational self-force’’ (GSF)
effect has recently been computed for generic (bound)
geodesic orbits around a Schwarzschild black hole
[21–23]. In particular, the OðqÞ correction to the test-
mass result KSchw has been derived [24]. This calculation
determined (numerically) the term �ðxÞ in the function
W � 1=K2 ¼ 1� 6xþ q�ðxÞ þOðq2Þ. The results are
well fitted (at the 10�5 level) by the rational function
� ¼ 14x2ð1þ �xÞ=ð1þ �xþ 	x2Þ, with � ¼ 12:9906,
� ¼ 4:577 24, and 	 ¼ �10:3124. (This model improves
upon the model of Ref. [24]; it is based on a much denser
sample of GSF data points in the relevant frequency range.)
In terms of the quantity K we have

Kq
GSF ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6x

p
�
1� q

2

�ðxÞ
1� 6x

þOðq2Þ
�
: (6)

We used this expression, with the above analytic fit for
�ðxÞ, to produce the dashed blue curves in Figs. 1–3.

Since �ðxÞ> 0 for all stable circular orbits, the OðqÞ
GSF decreases the rate of precession. Note that the formal
divergence ofKq

GSF at the ISCO limit (x ! 1=6) is simply a

consequence of the fact that �r vanishes there (by defini-
tion), while �’ remains finite. This divergence might

explain why the convergence of the standard PN series
seems to deteriorate with decreasing q [25], as also illus-
trated by our results (cf. Fig. 3). We remind the reader that
Eq. (6) captures only the conservative effect of the GSF
and has a limited physical relevance near the ISCO, where
the actual dynamics transitions from an adiabatic quasicir-
cular inspiral (driven by the dissipative piece of the GSF)
to a direct plunge [26,27].

We now turn to discuss one of the most striking findings
of our study. Since q and � ¼ q=ð1þ qÞ2 coincide at
leading order, namely, q ¼ �þOð�2Þ, we may recast
Eq. (6) as

K�
GSF ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 6x

p
�
1� �

2

�ðxÞ
1� 6x

þOð�2Þ
�
; (7)

which, unlike Kq
GSF, is symmetric under m1 $ m2. The

solid blue curves in Figs. 1–3 show K�
GSF. Remarkably,

while the agreement between Kq
GSF and KNR becomes

manifest only at sufficiently small q (as expected), K�
GSF

appears to agree extremely well with KNR at all mass
ratios. This suggests that the substitution q ! � amounts
to an efficient ‘‘resummation’’ of the q expansion, to the
effect that much of the functional form KðxÞ is captured by
the Oð�Þ term, even for large q.

A few heuristic explanations for this behavior may be
suggested. (i) As mentioned earlier, quadratic corrections
in � enter the PN expression for K only at 3PN [recall
Eq. (4)] and account for less than 1% of K at this order.
This implies that the linear-in-� approximation must be
very accurate, at least at small frequencies. (ii) The true

function Kðx;m1; m2Þ must be invariant under exchange
m1 $ m2. The expansion in �, K�

GSF, satisfies this symme-

try by definition of �, whereas the expansion in q, Kq
GSF,

does not. (iii) Assuming the coefficients an in the formal
expansion K ¼ P

nanðxÞ�n do not increase with n (which,
however, only a future calculation of higher-order GSF
terms could confirm), this expansion will exhibit a fast
convergence since 0< � � 1=4; the same cannot be said
of the q expansion.
Comparison of the GSF curves in Figs. 1–3 with the NR

benchmark leads us to yet another important observation. It
is evident that the second-order GSF correction to K (i.e.,
the unknown term / q2) has an opposite sign with respect
to the first-order term; namely, the second-order GSF acts
to increase the rate of periastron advance. This is a new
result, which illustrates the potential merit of cross-cultural
comparisons of the kind advocated in this work.
Summary and discussion.—The advent of precision-NR

technology allows us, for the first time, to extract accurate
information about the local dynamics in binary black-hole
inspirals (previous studies focused primarily on asymptotic
waveforms) and carry out meaningful comparisons with
the results of analytic approaches to the problem. These
comparisons and cross-check validations among analytic
approximants and NR results are crucial for developing
faithful analytic waveforms to be used in LIGO or Virgo
searches.
Here we focused on a particular aspect of the dynamics,

namely, the relativistic periastron advance. We worked in a
highly relativistic regime, where the periastron advance
can reach values as high as half an orbit per radial period
(far greater than the meagre �4300 per century advance of
Mercury’s perihelion). We employed the invariant relation
Kð�’Þ as a reference for comparison, which is meaningful

only in the adiabatic regimewhere the dissipative evolution
is ‘‘slow.’’ For the range of inspiral orbits covered by our
NR simulations, a measure of adiabaticity is provided by

0:3% & _�’=�
2
’ & 1:7%. This suggests that inclusion of

dissipative effects in the PN, EOB, or GSF results would
not substantially affect our conclusions. The very good
agreement between the analytical and NR results at low
frequency, where the error inKNR is smallest, also supports
this expectation.
Our direct comparison between perturbative and full NR

results is the first of its kind. The OðqÞ GSF prediction
agrees with the NR data for small mass ratios (e.g.,
q ¼ 1=8 or 1=6) to within a relative difference of magni-
tude �q2, as expected. This provides an extremely strong
validity test for both NR and GSF calculations.
Furthermore, the sign and magnitude of the difference
KNR � Kq

GSF give us valuable, hitherto inaccessible infor-

mation about the second-order GSF effect.
The above validation test is further reinforced by the

3PN result, which shows a good agreement with the NR
data at small frequencies, or ‘‘large’’ separations (down
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to r� 10m), especially for comparable masses (e.g., for
q ¼ 1 or 2=3). Our comparison also reaffirms the expec-
tation that the PN approximation performs less well in the
small mass-ratio regime.

We find that the EOB(3PN) prediction of the periastron
advance is in very good agreement with the numerical one
across the entire range of mass ratios and frequencies
considered. This result supports the idea that the EOB
formalism can describe the binary dynamics at all mass
ratios.

Finally, we observe that the simple replacement q ! �
can extend the validity of the GSF approximation far
beyond the extreme mass-ratio inspiral regime. Indeed,
our model K�

GSF agrees very well with the NR data at all

frequencies and for all mass ratios considered, including
the equal mass case. This surprising result suggests that
GSF calculations may very well find application in a
broader range of physical problems than originally envis-
aged, including the modeling of intermediate mass-ratio
inspirals, a plausible source of gravitational waves for
Advanced LIGO or Virgo [28].
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