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We consider open quantum systems weakly coupled to a heat reservoir and driven by arbitrary time-

dependent parameters. We derive exact microscopic expressions for the nonequilibrium entropy produc-

tion and entropy production rate, valid arbitrarily far from equilibrium. By using the two-point energy

measurement statistics for system and reservoir, we further obtain a quantum generalization of the

integrated fluctuation theorem put forward by Seifert [Phys. Rev. Lett. 95, 040602 (2005)].
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Nonequilibrium phenomena are ubiquitous in nature.
Yet, a general framework allowing their description far
from equilibrium is lacking [1]. A defining feature of
out-of-equilibrium systems is that they dissipate energy
in the form of heat, leading to an irreversible increase of
their entropy. The nonequilibrium entropy production �
and its time derivative, the entropy production rate � ¼
@t�, are therefore two fundamental concepts of nonequi-
librium thermodynamics [1]. Traditionally, the entropy
production is used to evaluate the performance of thermo-
dynamic devices: the maximal useful work, the availability
(or exergy), that can be extracted from a given system, is
reduced by the presence of irreversibilities, such as friction
or nonstatic transformations. This loss of availability is
directly related to the mean entropy production h�i [2].
On the other hand, the entropy production rate is the
generating function of the nonequilibrium fluxes.
Consider a system driven away from equilibrium by
some thermodynamic forces Xi, for example, an electric
field or a temperature difference. These forces will cause
unknown nonequilibrium fluxes Ji, for instance an electric
current or a heat flow, that are given by the derivative of the
entropy production rate with respect to the applied force,
Ji ¼ @�=@Xi [1]. More recently, the entropy production
has been instrumental in the analysis of nonequilibrium
effects in many different branches of physics [3–5], includ-
ing the study of quantum impurity models [6] and of
quenched quantum many-body systems [7]. The explicit
expression of the mean quantum entropy production h�i is
in general unknown, however. A remarkable property of
the entropy production is that it satisfies a fluctuation
theorem of the form hexpð��Þi ¼ 1, which holds arbi-
trarily far from equilibrium [8,9]. A unified version of
classical fluctuation theorems, valid for nonequilibrium
initial conditions and arbitrary driving, has lately been
obtained by Seifert for the total entropy change occurring
in system and reservoir [10].

In this Letter, we provide generic microscopic expres-
sions for the entropy production, and the entropy produc-
tion rate, for open quantum systems that are weakly
coupled to a heat reservoir and driven arbitrarily far from

equilibrium by external parameters. The time evolution
and the thermodynamic properties of weakly damped
quantum systems are usually described by Markovian
master equations of the Lindblad type [11–13]. With their
help, microscopic expressions for the entropy production
rate in terms of the reduced density operator of the system
have been obtained for relaxation [14], transport [15], and
slowly driven quantum processes [16]. Moreover, a fluc-
tuation theorem for the entropy produced along quantum
trajectories has been derived in Refs. [17–19]. However,
Markovian master equations are limited to slow driving,
that is near equilibrium processes, as their derivation
is based on the assumption of time-independent
Hamiltonians [20]. A formulation of completely positive
maps for fast driven quantum systems, that is far from
equilibrium transformations, for which the Markovian ap-
proximation is likely to break down, appears difficult
[21,22]. In the following, we employ a thermodynamic
approach to derive the exact mean nonequilibrium quan-
tum entropy production and mean quantum entropy pro-
duction rate without relying on master equations or on
quantum trajectories. The obtained expressions are there-
fore valid for driving processes that operate arbitrarily far
from equilibrium. In addition, starting from the two-point
energy measurement statistics for system and reservoir, we
derive a quantum extension of Seifert’s fluctuation theorem
[10]. Our general formalism allows us to recover and
extend a number of previously known results in a unified
manner.
Nonequilibrium quantum entropy production.—We con-

sider a quantum system whose HamiltonianHt is driven by
an arbitrary time-dependent external parameter during a
finite time interval �. The system is assumed to be weakly
coupled to an infinitely large thermal reservoir with which
it can exchange energy in the form of heat [23]. We focus,
for the time being, on the situation where the system is
initially and finally in states that are not in equilibrium with
the reservoir, but nonetheless are local equilibrium states,
so that the thermodynamic variables of the system—in
particular its entropy—are well defined. We emphasize
that the quantum system need not remain close to
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equilibrium during the driving process (see Fig. 1). We
denote by �U ¼ U� �U0 the change of internal energy
between final and initial states and by �S ¼ S� � S0 the
corresponding change of entropy. Since U and S are state
functions, their variations are process independent.
According to the laws of thermodynamics, the changes of
internal energy and entropy are [1]

�U ¼ hWi þ hQi; (1)

�S ¼ �hQi þ h�i; (2)

where hWi is the mean work done on the system, hQi the
mean heat exchanged during the process, and h�i the mean
entropy production (� ¼ 1=T is the inverse temperature of
the reservoir). It is worth noticing that these quantities are
well defined for arbitrary nonequilibrium transformations.
In particular, the thermodynamic entropy may not be de-
fined out of equilibrium, but the entropy production be-
tween initial and final equilibrium states always is. From
Eqs. (1) and (2) we see that the mean nonequilibrium
entropy production is given by

h�i ¼ �S� ��Uþ �hWi: (3)

In order to obtain a microscopic expression for h�i, we
introduce the reduced density operator �t of the system.
The initial and final equilibrium operators are �i ¼
expð��iH0Þ=Zi and �f ¼ expð��fH�Þ=Zf, where Zi

and Zf are the partition functions. We further define the

instantaneous equilibrium operator �
eq
t ¼ expð��HtÞ=Zt,

with respect to the reservoir, that corresponds to the
Hamiltonian Ht. The initial entropy is then of the form

Si ¼ �trf�i ln�ig: (4)

At the same time, the initial internal energy is

�Ui ¼ �trf�iH0g ¼ �trf�i ln�
eq
0 g þ lnZ0; (5)

where we have used Z0 ¼ trfexpð��H0Þg. Similar expres-
sions are obtained for the final entropy and internal energy
by replacing i by f and 0 by �. We identify the mean work

done during the process with the average change of the
Hamilton with time [11],

�hWi ¼ �
Z �

0
dttrf�t@tHtg

¼ �
Z �

0
dttrf�t@t ln�

eq
t g � lnZ� þ lnZ0: (6)

Combining Eqs. (3)–(6), we obtain the general expression

h�i ¼ Sð�i k �eq
0 Þ � Sð�f k �eq

� Þ �
Z �

0
dttrf�t@t ln�

eq
t g;
(7)

where we have introduced the quantum relative entropy of
two operators Sð�1 k �2Þ ¼ trf�1 ln�1 � �1 ln�2g [24].
Equation (7) is the exact microscopic expression for the
mean nonequilibrium entropy production for a driven open
quantum system weakly coupled to a single heat reservoir.
It does not depend on the details of the reservoir or of the
coupling. It is, moreover, valid for intermediate states that
can be arbitrarily far from equilibrium. We next focus on
four special cases to elucidate the physical meaning of the
different terms appearing in Eq. (7),
(a) Let us start with the case of an undriven system,

@tHt ¼ 0, which corresponds to a pure relaxation process
(without work). Since �f ¼ �eq

� , Eq. (7) reduces to

h�iequil ¼ Sð�i k �eq
0 Þ: (8)

This is the mean entropy production associated with the
equilibration of the quantum system with the reservoir, a
result first obtained by Schlögl for classical nonequilibrium
systems [25] (see also Refs. [26,27]).
(b) Assume the system is initially in equilibriumwith the

reservoir, �i ¼ �eq
0 (no initial equilibration). When the

driving is such that the system also ends in equilibrium
with the reservoir at t ¼ �, �� ¼ �

eq
� ¼ �f—the situation

usually considered in thermodynamics [2]—then

h�idriving ¼ �
Z �

0
dttrf�t@t ln�

eq
t g: (9)

Since initial and final temperatures are the same, the mean
quantum entropy production is here simply given by the
irreversible work divided by the temperature,

h�i ¼ �ðhWi ��FÞ ¼ �hWiri; (10)

with �F ¼ �U� T�S when T ¼ const.
(c) On the other hand, for general driving, the system

will not be in equilibrium with the reservoir at the end of
the driving protocol, �f � �eq

� , and an additional relaxa-

tion process will hence take place. As a result,

h�idrivingþequil ¼�Sð�f k�eq
� Þ�

Z �

0
dttrf�t@t ln�

eq
t g: (11)

We can therefore conclude that the general form of the
entropy production (7) accounts for all three kinds of

Equilibrium

Nonequilibrium

f

i

0
eq

eq

FIG. 1 (color online). During a quasistatic process, a weakly
damped system remains in equilibrium with the reservoir at all
times. We here consider open quantum systems that are driven
by arbitrary time-dependent external parameters and may ini-
tially and finally be in any state �i and �f, not necessarily in

equilibrium with the reservoir.
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irreversibilities that can occur in the driven open quantum
system: initial relaxation, far from equilibrium driving and
incomplete final relaxation. Equation (7) thus expresses the
additivity of the entropy production.

(d) For closed, initially thermal quantum systems, the
dynamics is unitary (without heat exchange) and
@ttrf�t ln�tg ¼ 0. The entropy production is thus [28]

h�i ¼ �
Z �

0
dttrf�t@t ln�

eq
t g

¼
Z �

0
dt@tSð�t k �eq

t Þ ¼ Sð�� k �eq
� Þ ¼ �hWiri; (12)

where the second line follows from the unitary evolution,
_�t ¼ �i½Ht; �t�. A classical version of Eq. (12) can be
found in Ref. [29] (see also Ref. [30]).

Nonequilibrium entropy production rate.—The instanta-
neous entropy production rate is defined as the time de-
rivative of the nonequilibrium entropy production,
� ¼ @t� [1]. As discussed in the introduction, it contains
essential information about the nonequilibrium dynamics
of a system. Taking the derivative of Eq. (7), we obtain

h�i ¼ �@tSð�t k �
eq
t Þ � trf�t@t ln�

eq
t g;

¼ �trfð@t�tÞ ln�tg þ trfð@t�tÞ ln�eq
t g: (13)

The above expression agrees with the entropy production
rate for slowly driven open quantum systems derived by
Breuer using a Markovian master equation of the Lindblad
type [16] (see also Ref. [12]). In the limit of undriven
quantum systems, it reduces to the result h�i ¼ �@tSð�t k
�eq
0 Þ previously derived by Spohn [14]. We emphasize that

Eq. (13) is valid far from equilibrium.
Quantum fluctuation theorem.—One can broadly distin-

guish two strategies for deriving quantum fluctuation the-
orems. In the first approach, thermodynamic variables, like
work, heat, and entropy, are defined along single trajecto-
ries of the system [17–19]. In the second approach, work
and heat are determined by two energy measurements, one
taking place before and the other one after the time-
dependent driving [31–35]. We note, however, that the
question of how to experimentally determine thermody-
namic quantities along quantum trajectories is still un-
solved, contrary to the case of energy measurements, for
which a nondemolition scheme has been proposed in
Ref. [36]. We will therefore follow the second approach.

We denote by Em and ER
� the respective eigenvalues of

system and reservoir obtained after a joint measurement of
their energies in the initial state before the driving.
Similarly, we call the corresponding energy eigenvalues
obtained after a joint measurement in the final equilibrium
state En and ER

� . The latter can be determined simulta-
neously since the Hamiltonians of the system and of the
reservoir commute. In the limit of weak coupling, the
system-reservoir interaction energy may be neglected.
For a single realization of the process, the heat exchanged

by the system is thus given by the energy variation of the
reservoir Q ¼ �ðER

� � ER
�Þ. We further introduce the en-

ergy change in the system, weighted by the different initial
and final inverse temperatures, �E�f;�i

¼ �fEn � �iEm.

The joint probability distribution Pð�E�f;�i
; �QÞ is then

P ð�E�f;�i
; �QÞ ¼ X

m;n;�;�

�ð�E�f;�i
� ð�fEn � �iEmÞÞ

� �ð�Qþ �ðER
� � ER

�ÞÞ
� pðn; �jm;�Þpm;�; (14)

where pðn; �jm;�Þ is the total transition probability for
system and reservoir to evolve from the state (m, �) to the
state (n, �), and pm;� ¼ expð��iEm � �ER

�Þ=ðZiZRÞ is

the initial occupation probability. Equation (14) is a two-
temperature generalization of the joint probability distri-
bution for internal energy change and heat discussed in
Refs. [34,35]. We next define the entropy variation�S that
occurs in the system during a single realization of the
driving protocol as

�S ¼ �fðEm � FfÞ � �iðEn � FiÞ;
¼ �E�f;�i

� �fFf þ �iFi; (15)

where Fi ¼ �ð1=�iÞ lnZi and Ff ¼ �ð1=�fÞ lnZf are the

free energies of the system in the initial and the final states.
Since lnZi ¼ � lnpm

i � �iEm and lnZf¼�lnpn
f��fEn,

with pm
i and pn

f the initial and final occupation probabil-

ities of the system, we have

�ð�E�f;�i
� ð�fEn � �iEmÞÞ ¼ �ð�S þ lnpn

f � lnpm
i Þ:
(16)

The change of variable �E�f;�i
! �S in Eq. (14) then

yields the joint distribution for entropy and heat,

P ð�S; �QÞ ¼ X
m;n;�;�

�ð�S þ lnpn
f � lnpm

i Þ�ð�Q

þ �ðER
� � ER

�ÞÞpðn; �jm;�Þpm;�: (17)

According to Eq. (2) the nonequilibrium entropy produc-
tion for a single realization is � ¼ �S � �Q. The entropy
production� is thus the sum of the entropy variation of the
system �S and of the reservoir �SR ¼ ��Q, and hence
corresponds to the total entropy change. The distribution of
the entropy production is obtained by integrating Eq. (17)
over the heat. We find

P ð�Þ ¼
Z

dð�QÞP ð�Qþ�; �QÞ
¼ X

m;n;�;�

�ð�þ lnpn
f � lnpm

i � �ðER
� � ER

�ÞÞ

� pðn; �jm;�Þpm;�: (18)

One can verify that the mean quantum nonequilibrium
entropy production h�i computed directly from Eq. (18)
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leads to the general expression (7), as it should. To finally
establish the quantum fluctuation theorem, we evaluate

hexpð��Þi ¼
Z

d�expð��ÞP ð�Þ

¼ X
m;n;�;�

pðn; �jm;�Þpn;� ¼ 1; (19)

with pn;� ¼ expð��fEn � �ER
� Þ=ðZfZRÞ. Here, we have

used that the reservoir remains in equilibrium at all times.
The last equality follows from the unitary dynamics of
system-plus-reservoir and the normalization of the corre-
sponding total density operator. By Jensen’s inequality,
Eq. (19) implies that the mean nonequilibrium entropy
production (7) is positive, h�i � 0.

So far, we have restricted ourselves to initial and final
local equilibrium states for which the thermodynamic en-
tropy is well defined. However, by twice measuring the
density operator of the system, instead of its Hamiltonian,
and obtaining the two eigenvalues �r

i ¼ hrj�ijri and
�s
f ¼ hsj�fjsi, we can introduce the information entropy

production for a single realization,

�I ¼ � ln�s
f þ ln�r

i � �ðER
� � ER

�Þ: (20)

After averaging, the first two terms on the right-hand side
become the von Neumann (information) entropy of final
and initial states. Repeating the previous derivation then
shows that the quantity �I satisfies a fluctuation theorem
hexpð��IÞi ¼ 1 that is valid for any initial and final non-
equilibrium states, and arbitrary driving protocol. The
latter is the quantum generalization of the integral fluctua-
tion theorem proposed by Seifert [10]. The corresponding
mean information entropy production is given by Eq. (7)
with arbitrary nonequilibrium �i and �f. In particular, for

an undriven partial relaxation process from a nonequilib-
rium state to another, we have

h�Ii ¼ Sð�i k �
eq
0 Þ � Sð�f k �

eq
� Þ; (21)

which is consistent with the result obtained in Ref. [37], in
the limit of weak system-reservoir coupling.

Conclusion.—We have obtained the exact formula for
the nonequilibrium entropy production, and entropy pro-
duction rate, for weakly coupled open quantum systems
driven arbitrarily far from equilibrium. The latter provide
useful tools to investigate processes beyond linear re-
sponse. In deriving Eq. (7), we have assumed the micro-
scopic density operator of the system to be given. For
practical applications, it may be determined for specific
dynamics either theoretically with the help of powerful
numerical methods, such as t-DMRG [38], or experimen-
tally with efficient quantum state tomography techniques
[39]. By using a joint system-reservoir measurement ap-
proach, we have additionally derived a quantum extension
of the integral fluctuation theorem of Seifert for the total

entropy change that is valid for any initial nonequilibrium
condition and arbitrary time-dependent driving.
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