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We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of

freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne

detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases.

We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and

study its dependence on the rate at which the critical point is crossed. Coherent switching between the two

ordered phases is demonstrated.
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Spontaneous symmetry breaking at a phase transition is
a fundamental concept in physics [1]. At zero temperature,
it is caused by the appearance of two or more degenerate
ground states in the Hamiltonian. As a result of fluctua-
tions, a macroscopic system evolves into one particular
ground state which does not possess the same symmetry as
the Hamiltonian. Finding a clean testing ground to experi-
mentally study the process of symmetry breaking is noto-
riously difficult, as external fluctuations and asymmetries
have to be minimized or controlled. The protected environ-
ment of atomic quantum gas experiments and the increas-
ing control over these systems offer new prospects to
experimentally approach the concept of symmetry break-
ing. Recently, rapid quenches across a phase transition
were studied in multicomponent Bose-Einstein conden-
sates [2–4] and optical lattices [5,6]. Such a nonadiabatic
quench causes a response of the system at correspondingly
high energies. Therefore, a central characteristic of a phase
transition, which is its diverging susceptibility to perturba-
tions, remains partially hidden.

In this work, we study the symmetry-breaking process
while slowly varying a control parameter several times
across a zero-temperature phase transition. Compared to
quenching, this allows us to explore the low energy spec-
trum of the system which probes its symmetry most sensi-
tively. For very slow crossing speeds, we identify the
presence of a residual symmetry-breaking field of varying
strength. Larger values of this residual field can be corre-
lated to the repeated observation of one particularly or-
dered state. For increasingly steeper ramps across the
phase transition, the influence of the symmetry-breaking
field almost vanishes.

We investigate the symmetry breaking in the motional
degree of freedom of a Bose-Einstein condensate coupled
to a single mode of an optical cavity. Our system realizes
the Dicke model [7–9], which exhibits a second-order
zero-temperature phase transition [10–13]. The broken
symmetry is associated with the formation of one of two
identical atomic density waves, which are shifted by half an
optical wavelength [8,9,14,15]. Using an interferometric

heterodyne technique, we monitor the symmetry-breaking
process in real time while crossing the transition point. A
similar technique has been used to test self-organization in a
classical ensemble of laser-cooled atoms [15], where the
symmetric phase is stabilized by thermal energy rather than
kinetic energy [16].
The Dicke model [7] considers the interaction between

N two-level atoms and the quantized field of a single-mode
cavity, which is described by the Hamiltonian

Ĥ ¼ @!0Ĵz þ @!âyâþ 2@�
ffiffiffiffi
N

p ðây þ âÞĴx: (1)

Here, â and ây denote the annihilation and creation opera-
tors, respectively, for the cavity mode at frequency !, and

Ĵ ¼ ðĴx; Ĵy; ĴzÞ describes the atomic ensemble with tran-

sition frequency !0 in terms of a pseudospin of length
N=2. The cavity light field couples with coupling strength

� to the collective atomic dipole Ĵx. In the thermodynamic
limit, the Dicke model exhibits a zero-temperature phase
transition from a normal to a superradiant phase when the
control parameter � exceeds a critical value given
by �cr ¼ ffiffiffiffiffiffiffiffiffiffi

!!0
p

=2 [10–12]. Simultaneously, the parity

symmetry of the Dicke Hamiltonian, given by the invari-

ance under the transformation ðâ; ĴxÞ ! ð�â;�ĴxÞ, is
spontaneously broken [13]. While parity is conserved in

the normal phase with hâi ¼ 0 ¼ hĴxi, two equivalent
superradiant phases (denoted by even and odd) emerge

for � > �cr, which are characterized by hĴxi + 0 and
hâi _ 0, respectively [Fig. 1(b)].
In our experiment [8], we couple motional degrees of

freedom of a Bose-Einstein condensate with a single cavity
mode by using a transverse coupling laser [Fig. 1(a)].
Within a two-mode momentum expansion of the matter-
wave field, the Hamiltonian dynamics of this system is
described by the Dicke model [Eq. (1)] [8,9,17], where the
effective atomic transition frequency is given by!0 ¼ 2!r

with the recoil frequency !r ¼ @k2=2m, the atomic mass
m, and the wavelength �p ¼ 2�=k of the coupling laser.
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The frequency and power of this laser control the effective
mode frequency ! and the coupling strength �, respec-
tively [8]. Above a critical laser power, the discrete
�p=2-spatial symmetry, defined by the optical mode struc-

ture uðx; zÞ ¼ cosðkxÞ cosðkzÞ, is spontaneously broken,
and the condensate exhibits either of two density waves
[Fig. 1(b)]. Correspondingly, the atomic order parameter

hĴxi, given by the population difference between the even
[uðx; zÞ> 0] and odd [uðx; zÞ< 0] sublattices, exhibits a
negative or positive macroscopic value, while the emergent
coherent cavity field oscillates (for ! � �) either in
(� ¼ 0) or out of phase (� ¼ �) with the coupling laser.

As described previously [8], we prepare Bose-Einstein
condensates of typically 2� 105 87Rb atoms in a crossed-
beam dipole trap centered inside an ultrahigh-finesse opti-
cal Fabry-Perot cavity, which has a length of 176 �m. The
transverse coupling laser at wavelength �p ¼ 784:5 nm

is red-detuned by typically ten cavity linewidths 2� ¼
2�� 2:5 MHz from a TEM00 cavity mode, realizing the
dispersive regime ! � !0 of the Dicke model. We moni-
tor the amplitude and phase of the intracavity field in real
time by using a balanced heterodyne detection scheme
[Fig. 1(a)]. Because of slow residual drifts of the differen-
tial path length of our heterodyne setup, which translate
into drifts of the detected phase signal of about 0:1 �=s, we

cannot relate the phase signals between consecutive ex-
perimental runs separated by 60 s.
To observe symmetry breaking, we gradually increase

the coupling laser power across the critical point [Fig. 2(a)].
The transition from the normal to the superradiant phase is
marked by a sharp increase of the mean intracavity photon
number [Fig. 2(b)]. Simultaneously, the time phase �
between the two light fields locks to a constant value,
implying that the symmetry of the system has been broken
[Fig. 2(c)]. The observation of a constant time phase above
threshold confirms that the system reaches a steady-state
superradiant phase in which the induced cavity field oscil-
lates at the coupling laser frequency. When lowering the
laser power to zero again, the system recovers its initial
symmetry and a pure Bose-Einstein condensate is retrieved,
as was inferred from absorption imaging after free ballistic
expansion.
To identify the two different superradiant states

[Fig. 1(b)], we cross the phase transition multiple times
within one experimental run [Fig. 3(a)]. Above threshold,
the corresponding phase signal takes always one of two
constant values. From multiple traces of this type, we
extract a time-phase difference of 1:00ð2Þ � � between
the two superradiant phases, where the statistical error
can be attributed to residual phase drifts of our detection
system.
If the system were perfectly symmetric, the two ordered

phases would be realized with equal probabilities, when
repeatedly crossing the phase transition. However, the
presence of any symmetry-breaking field will always drive
the system into the same particularly ordered state when

FIG. 2 (color online). Observation of symmetry breaking and
steady-state superradiance. Shown are simultaneous traces of
(a) the coupling laser power P, (b) the mean intracavity photon
number nph, and (c) the relative time phase � between the

coupling laser and cavity field (both averaged over 150 �s).
The coupling laser frequency is red-detuned by 31.3(2) MHz
from the empty cavity resonance, and the atom number is
2:3ð5Þ � 105. Residual atom loss causes a slight decrease of
the cavity photon number in the superradiant phase.

FIG. 1 (color online). (a) Experimental setup. A Bose-Einstein
condensate is placed inside an optical cavity and driven by a far-
detuned standing-wave laser field (wavelength �p) along the z

axis. The phase and amplitude of the intracavity field are
measured with a balanced heterodyne setup (PD, photodiodes).
(b) Steady-state order parameter hĴxi as a function of coupling
strength �, with corresponding atomic density distributions
(1)–(3). The order parameter vanishes in the normal phase (1)
and bifurcates at the critical point �cr, where a discrete
�p=2-spatial symmetry is broken. The two emergent superra-

diant phases [(2) and (3)] can be distinguished via the relative
time phase �.

PRL 107, 140402 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

30 SEPTEMBER 2011

140402-2



adiabatically crossing the critical point. We experimentally
quantify the even-odd imbalance by performing 156 ex-
perimental runs [similar to Fig. 3(a)], in each of which
the system enters the superradiant phase 10 times within
1 s. A measure for the even-odd imbalance is given by
the parameter � ¼ ðm1 �m2Þ=10, where m2 � m1 denote
the number of occurrences of the two superradiant con-
figurations in individual traces. In 73% of the traces, the
system realized 10 times the same time phase, correspond-
ing to the maximum imbalance of � ¼ 1 [Fig. 3(b)].
However, 12% of the runs exhibited an imbalance below
0.5, which is not compatible with a constant even-odd
asymmetry.

We attribute our observations to the finite spatial exten-
sion of the atomic cloud. This can result, even for zero
coupling �, in a small, but finite population difference
between the even and odd sublattices, determined by
the spatial overlap O between the atomic column density
nðx; zÞ (normalized to N) and the optical mode profile
uðx; zÞ. This asymmetry enters the two-mode description

[Eq. (1)] via the symmetry-breaking term 2@�Oðây þ
âÞ= ffiffiffiffi

N
p

and renormalizes the order parameter hĴxi by the
additive constant O. The resulting coherent cavity field
below threshold drives the system dominantly into either of
the two superradiant phases, depending on the sign of O.
In the experiment, the resulting even-odd imbalance is
likely to change between experimental runs, as the overlap
integralO depends �p-periodically on the relative position

between the mode structure uðx; zÞ and the center of

the trapped atomic cloud, with amplitude O0. We can
exclude a drift of the relative trap position by more than
half a wavelength �p on the time scale given by our

probing time of 1 s, as it would lead to equal probabilities
of the two phases, pretending spontaneous symmetry
breaking.
The openness of the system provides us with direct

experimental access to the symmetry-breaking field pro-
portional to O. Indeed, we detect a small coherent cavity
field (nph < 0:02) in the normal phase whose magnitude

varies between experimental runs. In all runs exhibiting an
imbalance of � ¼ 1 [Fig. 3(b)], the relative time phases of
the cavity field detected below and above threshold are
equal. Furthermore, the even-odd imbalance increases
significantly with the light level observed below threshold.
Postselection of those 10% of the runs with the smallest
light level yields a much smaller mean imbalance
[Fig. 3(b), inset].
In general, the influence of a symmetry-breaking field

becomes negligible, if the mean value of the order parame-
ter, induced by this field, is smaller than the quantum or
thermal fluctuations present in the system. From a mean-
field calculation performed in the Thomas-Fermi limit for
N ¼ 2� 105 harmonically trapped atoms, we estimate a
maximum order parameter of O0 ¼ 40 for zero coupling
strength, corresponding to an even-odd population differ-
ence of 40 atoms. This value is much smaller than the

uncertainty �Jx ¼
ffiffiffiffi
N

p
=2 ¼ 224, given by vacuum fluctu-

ations of the excited momentum mode. Therefore, one
expects in the extreme case of a sudden quench of the
coupling strength beyond �cr that the apparent symmetry is
spontaneously broken, resulting in nearly equal probabil-
ities of the two superradiant phases.
In the experiment, we determined the even-odd imbal-

ance � for increasingly larger rates _�=�cr at which the
critical point was crossed, i.e., in an increasingly nonadia-
batic situation [Fig. 3(c)]. As the transition is crossed faster,
the mean imbalance between the two superradiant phases
decreases significantly and approaches the value � � 0:25
corresponding to the balanced situation [Fig. 3(c), dashed
line]. This indicates that the effect of the symmetry-
breaking term can be overcome by nonadiabatically cross-
ing the phase transition.
Our observations [Fig. 3(c)] are in quantitative agree-

ment with a simple model based on the adiabaticity con-
dition known from the Kibble-Zurek theory [18,19]. We
divide the evolution of the system during the increase of
the transverse laser power into a quasiadiabatic regime,
where the system follows the change of the control pa-
rameter, and an impulse regime, where the system is
effectively frozen. After crossing the critical point, fluctu-
ations of the order parameter, which are present at the
instance of freezing, become instable and are amplified.
The coupling strength which separates the two regimes is

determined by Zurek’s equation [18] j _�=�j ¼ �=@, with

FIG. 3 (color online). (a) Cavity time phase (red, averaged
over 30 �s) for a single run and the corresponding time se-
quence of the coupling laser power P (dashed line).
(b) Probability distribution of the imbalance � (see the text)
for 156 runs, where the phase transition was crossed at a rate of
_�=�cr ¼ 18ð3Þ s�1. The inset displays the distribution of post-
selected data (see the text). (c) Mean imbalance (dots) as a
function of the rate _�=�cr at which the transition was crossed
(extracted from 356 runs in total) and the theoretical model
(solid line). The error bars indicate the standard error of the
mean of � and systematic changes of �cr during probing.
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� ¼ ð�cr � �Þ=�cr, and the energy gap between the ground

and first excited state given by � ¼ @!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2=�2

cr

p
for

! � !0 [13,17].
We deduce the probability with which the system choo-

ses the even phase, peven ¼
R1
0 pð�Þd�, from the proba-

bility distribution pð�Þ at the instance of freezing, where

�̂ denotes the shifted dipole operator �̂ ¼ Ĵx þO. In the
thermodynamic limit, the distribution pð�Þ becomes

Gaussian with a mean value h�̂i ¼ hĴxi þO and a width
determined by the quantum fluctuations of the order
parameter �Jx. These values are determined from the
linear quantum Langevin equations based on the Dicke
model [17] including the symmetry-breaking term.
Besides the decay of the cavity field, we also take into
account dissipation of the excited momentum state at a rate
� ¼ 2�� 0:6 kHz. This value was deduced from inde-
pendent measurements of the cavity output field below
threshold [20].

From the steady-state solution of the quantum Langevin

equations, we find that the mean order parameter h�̂i grows
faster in � than its fluctuations. If O> 12, the order
parameter exceeds its uncertainty already below critical
coupling. Thermal fluctuations are neglected in this analy-
sis. For our typical condensate temperatures of about
100 nK, quantum fluctuations dominate as long as
� > 0:005. We account for shot-to-shot fluctuations of the
overlap O by suitably averaging over the position of the
harmonic trap. The solid line in Fig. 3(c) shows a least-
squares fit of our model to the data with the single free
parameter O0. We obtain a value of O0 ¼ 77, which is in
reasonable agreement with the theoretically expected value
of O0 ¼ 40. This verifies the predominance of the consid-
ered symmetry-breaking field over other possible noise
terms.

Finally, we experimentally demonstrate coherent
switching between the two ordered states. To this end, we
suddenly turn off the coupling laser field after adiabatically

preparing the system in one of the two superradiant phases.
The atoms are then allowed to freely evolve according to
their momentum state occupation, giving rise to standing-
wave oscillations of the atomic density distribution. In the
two-mode description, this corresponds to harmonic oscil-

lations of the order parameter hĴxi at frequency 2!r. We
probe this time evolution by turning on the coupling laser
after a variable off time 	, thereby deterministically retrap-
ping the atoms either in the initial or in the opposite super-
radiant state. As expected, we observe regular � jumps in
the difference �� between the steady-state phase signals
measured before and after the free evolution, with a fre-
quency of 2!r (Fig. 4, dashed line). The inertia of the
atoms traveling at finite momentum causes the � jumps in
Fig. 4 to occur before those times at which the order
parameter has evolved by an odd number of quarter
periods.
In conclusion, we have experimentally monitored sym-

metry breaking in the Dicke quantum phase transition and
identified the interplay between a residual symmetry-
breaking field, fluctuations, and the crossing speed.
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