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Phenomena such as shear thinning and thickening, occurring when complex materials are exposed to
external forces, are generally believed to be closely connected to changes in the microstructure. Here, we
establish a direct and quantitative relation between shear thinning in a colloidal crystal and the surface
area of the locally melted region by dragging a probe particle through the crystal using optical tweezing.
We show that shear thinning originates from the nonlinear dependence of the locally melted surface area
on the drag velocity. Our observations provide unprecedented quantitative evidence for the intimate
relation between mechanical properties and underlying changes in microscopic structure.
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The response of materials to external stresses and strains
is of central importance for many applications in science
and technology [1,2]. At macroscopic length scales the
microstructure of many materials and complex fluids is
often neglected and continuum models are applied to
describe their flow behavior [1-3]. As a consequence of
progressive miniaturization, the effect of the microscopic
structure on mechanical properties becomes increasingly
significant, which has invoked the development of micro-
mechanical models [3-6]. Also in complex fluids there
are many suggestions that the rearrangement of the local
structure is the basis for behavior like shear thickening and
thinning [1,2,7-10]. The key here is the simultaneous
characterization of the external forces and changes in the
microstructure. We achieve this using active microrheol-
ogy of colloidal crystals, which enables us to directly
connect shear thinning to local melting.

A two-dimensional, hexagonal colloidal crystal of mela-
mine spheres of radius R, = 1.5 um in water is deformed
using a probe particle trapped in an optical tweezer.
The lattice spacing a and number density p are 3.5 um
and 0.087 um~? respectively, and the size of single-
domain crystallites is typically larger than 250 X
250 um?. Adding a very small amount (less than one probe
particle per ~3000 small particles) of large polystyrene
probe particles (R, = 7.75 um) to the suspension results
in a crystal with built-in probe particles as shown in
Fig. 1(a). The probe particle is trapped by an acousto-
optical-deflection controlled laser tweezer [11,12] and sub-
sequently moved typically ~100 pm through the colloidal
crystal at drag velocities v varying from 0.05 to 4 um/s.
Particle positions are monitored in real-space and time
using digital video microscopy [13].

Driving the probe particle by optical tweezing can lead
to three different modes: constant force, constant velocity
or a mixed mode [9,14]. At constant force the probe can
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move around obstacles while at constant velocity the
particle will largely resist lateral motions thus leading to
significantly larger deformations of the material. To ad-
dress the deformation of the crystal by the probe we used a
stiff optical trap to suppress the diffusive motion of the
probe particle in the trap during drag, and hence, establish
a constant velocity regime [12]. The optical trapping po-
tential was confirmed to be parabolic Uy,, = — %Arz, with
a spring constant k = 3.1 X 1077 Nm™! [Fig. 1(e)] [12].

Figure 1(a)-1(c) shows three snapshots of a crystal
through which a probe particle is being dragged from left
to right at a velocity of 0.25 um/s. As is clearly inferred
from the disordered area behind the probe particle, the drag
leads to the formation of numerous defects resulting in
local melting [9,15-18]. Although the colloidal crystal
is slightly compressed in front of the probe particle,
the crystal remains remarkably intact in this region.
This is due to the softness of the interparticle potential.
Furthermore, the original crystal orientation is completely
recovered behind the probe as recrystallization is tem-
plated by the crystal surrounding the disordered area
[Fig. 1(c)]. The drag force can be directly determined
from the displacement of the probe particle relative to
the optical trap: Ar =| Fpobe — Firap | - In Fig. 1(d) the
displacement is shown as a function of time for a drag
velocity of 0.25 wm/s. Initially, the displacement in-
creases steeply after which a steady state displacement
Ar, is reached [horizontal line in Fig. 1(d)]. The fluctua-
tions around Ar, are due the intermittent nature of the
probe’s motion through the crystal: pushing the encoun-
tered particles away and subsequently “hopping” from site
to site [9,17,18]. The data presented here all correspond to
the steady state regime.

The dependence of the steady state displacement—and
hence the drag force (F = kAr;;)—on the drag speed is
presented in Fig. 1(f) and can be divided into two regimes.
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FIG. 1. (a)~(c) Snapshots (170 X 60 uwm?) of the system for
v = 0.25 um/s at (a) 25, (b) 250, and (c) 500 s. Note that the
drag was started at 7, = 25 s. (d) The radial displacement of
the probe particle from the center of the trap Ar as a function of
the time. The horizontal line represents the steady state dis-
placement Ar,. (e) The trapping potential for the probe
particle: Uy = — §Ar2 with the spring constant k =
3.1 X 1077 Nm™L. (f) Ar,, as a function of the drag velocity.
The solid line is a power-law fit F ~ (v — v,)* with a = 0.51.
The inset shows Ar, for small drag velocities.

In the limit of very small drag velocities the steady state
displacement only very slowly depends on the drag veloc-
ity [inset Fig. 1(f)]. The fact that the drag force jumps to a
finite value for a nonzero drag velocity points to the
existence of a finite yield stress [19-21]. At the yield point
the crystal starts to deform plastically, which is the onset of
melting. The force corresponding to yielding is 0.26 pN,
which is very similar to values obtained in (3D) dense hard
sphere fluids and glasses [22-24]. Converting the force to a
stress is not straightforward as the area over which this
force is applied is poorly defined. To obtain an order of
magnitude for the yield stress we estimate this area to be
on the order of (2R.)> = 10 um?. This leads to a yield
stress of roughly 0.02 Pa, which is comparable to earlier
macroscopic rheology experiments on crystals of charged
colloids [19].

At a drag velocity of around 0.20 um/s the displace-
ment starts to significantly increase with increasing drag
velocity [inset Fig. 1(f)]. For drag velocities below this
characteristic velocity v, the crystal recrystallizes faster
than it is locally disrupted; hence, the probe particle is
essentially dragged through the crystal without melting it.
As a consequence, the injected power Fv (energy per unit
time) is completely dissipated by friction below v,. For
v > v, the system does not recrystallize on the time scale
of drag. Therefore, an increasing part of the crystal is
locally melted upon increasing drag velocity, which leads
to the development of a fluidlike area behind the probe
particle. In this regime, the displacement—and hence the
drag force—grows sublinearly with the drag velocity.
Using a power-law fit we find that F ~ (v — v,.)* with «
close to 1/2. This implies “velocity or shear thinning”

similar to that observed in microrheology studies of dense
hard sphere systems [9,22,23,25] and bulk rheology of
colloidal crystals [19,20]. Moreover, the v'/? behavior
has been reported to be directly related to a change in the
structure factor, suggesting a change in the local structure
[7,8]. In our experiments, the change in the local structure
is readily quantified by analyzing the observed local melt-
ing of the crystal, which allows us to directly elucidate the
connection between shear thinning and the microstructural
rearrangements.

The local structure is characterized by computing the
defect density relative to the position of the probe particle
averaged over the steady state [12]. The defect densities are
shown for four different drag speeds in Fig. 2(a). The color
scale represents the fraction of time (in the steady state) the
system has been fluidlike. The area of the fluidlike region
behind the probe particle clearly increases with drag speed.
The—to a first approximation—‘‘triangularlike’” shape of
the defect area is the result of local melting and recrystal-
lization: without recrystallization the defect area would be
rectangular. The time required to recrystallize from rect-
angular to triangularlike is defined as the recrystallization
time and it is given by ¢, = L,/v,, where L, is the
perpendicular defect length [see Fig. 2(b)] and v, the
recrystallization speed. The shape of the defect area fur-
thermore suggests that it recrystallizes laterally as shown in
Fig. 2(b), consistent with the observation that the particles
constitute the same area before and after local melting.

Using a threshold of 0.5 for the fraction of time that the
system has been fluidlike to distinguish between crystal
and fluid, we determined the surface area of the observed
defect area as a function of the drag velocity [Fig. 2(c)].
This area consists of an area behind, A, and in front of, A,
the probe. Comparing the total area to the defect area in
front of the probe, shows that the defect area behind the
probe dominates the observed total defect area, and hence,
that the structure in front of the probe remains intact.
Below the characteristic velocity v, the total defect area
does not depend on the drag velocity, which yields a ““static
defect area” A, = 340 um? corresponding to an effective
static defect probe radius Ly = 10 um. This is consistent
with a “frustrated” fluid layer of roughly one small parti-
cle diameter around the probe as reported for crystals
containing large spherical impurities [26].

Above v, the power injected into the crystal is mainly
dissipated through distortion of the colloidal crystal—
resulting in local melting—rather than dissipation by
friction as is the case below v,.. This is evident from the
fact that below v, the increase of Ar, with v is negligible
compared to its increase above v, [Fig. 1(f)]. As a result,
the drag force can be quantitatively related to the local
melting for v > v,.. The number of melted particles per
unit time equals pAp./t,, where the total melted area
Aper is given by (24, — Ay/2) + (A; — Ay/2) = 24, +
Ay — Ap. The multiplication factor two accounts for the
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FIG. 2 (color online).

(a) Defect densities for four different drag velocities. The color scale is the fraction of time in the steady state

that the system has been fluidlike: green (blue) corresponds to crystalline (fluidlike) areas. (b) Schematic of the recrystallization
process in which the particles are moving in laterally. The parallel and perpendicular defect lengths L, and L, and the effective
static defect radius of the probe L, are indicated. (c) The observed total defect area (squares) and the defect area in front (dots) of the
probe particle as a function of v. The inset shows the melted area A, as a function of v — v.. The solid line is a power-law fit
Apey ~ (v — v,)* with @ = 1.51. (d) L, — L as a function of v — v, with a linear fit to the data. (d) L, — L, as a function of v — v,
with a power-law fit L, ~ (v — v.)* with @ = 0.55. (f) The recrystallization velocity as a function of v — v.. The solid line is a

power-law fit v, ~ (v — v,.)* with a = 0.47.

fact that the total melted area behind the probe is rectan-
gular, in contrast to the observed shape which is triangular-
like due to recrystallization (Fig. 2). By defining the
melting energy per particle U,,, the injected power is
directly related to A, for v > v, through

(F - FO)U = UmpAmelt/tr’ (1)

where F is the “yield force.” Importantly, Eq. (1) pro-
vides a direct quantitative relation between shear thinning
and the microstructure in terms of local melting. The
observed shear thinning behavior thus directly originates
from the nonlinear dependence of the melted surface area
on the drag velocity.

For drag velocities larger than v, the drag force is—to
leading order—proportional to v'/2. In this regime, the
total melted surface area A, is expected to be propor-
tional to v3/2, which is confirmed by the power-law fit to
the data in the inset in Fig. 2(c). To further corroborate this,
we note that A, /f, is approximately given by
2L,L./t, = 2L,v, where L, and L, are the parallel and
perpendicular defect lengths [Fig. 2(b)]. From Eq. (1) it
then follows that L, has the same drag velocity dependence
as the drag force F. Figure 2(e) confirms that L, ~ v* with
a close to 1/2. Consistently, the parallel defect length L is
found to be proportional to v [Fig. 2(d)]. Interestingly, this
suggests that the recrystallization velocity v, depends on
the drag velocity v: in the time ¢, the crystal has healed a
distance L, = v,t,, and the probe has moved a distance

L, = vt,. Note that this implies that ¢, is constant as
L, ~ v. The recrystallization velocity is then given by
v, = (L,/L,)v. Because L, ~ v and L, ~ v* the recrys-
tallization velocity v, should be proportional to v* with «
close to 1/2, which is indeed observed in Fig. 2(f). We
suspect that this reflects the increasing number density
mismatch between the crystal and the melted region at
higher drag speeds, which leads to a higher driving force
for recrystallization and hence a larger v,. We also expect
the hydrodynamic flow generated by probe particle to affect
the recrystallization, especially at higher drag velocities.

The established relation between the drag force and the
local structure also directly leads to the melting energy per
particle. Plotting the injected power as a function of the
melted area for v > v, indeed yields linear dependence as
shown in Fig. 3 and from the slope we find U,, = 152 =
12 kgT. This rather high value reflects the nonequilibrium
nature of the drag-induced melting in which all “bonds”
are broken. In this limit, U,, may be approximated as
zU;;(a)/2 [27], where z is the coordination number and
U;j(a) the pair interaction at a distance a. This leads to
U;j(a) = 50 kgT, which is common for charged colloidal
systems at high number densities [28].

From the melting energy per particle we can additionally
estimate Young’s modulus E, which is defined as E =
o/vy, where o is the stress and +y the strain. Dividing
the stress by the number density p yields an energy
per particle. Subsequently, applying the modified 2D
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FIG. 3. The power as a function of the total melted area A,
for v > v,. The linear fit to the data yields the melting energy
per particle using Eq. (1).

Lindemann’s criterion for the yield strain y = yyjeq =
0.033 [29] relates the melting energy per particle to the
Young’s modulus
U
E=2mf )
Yyield

g _ U, = EYyiela

p p

Interestingly, from our local probe experiments we find
E =~ 560 kpT/a3, consistent with measurements on ex-
tended bulk 2D colloidal crystals [30,31]. The good agree-
ment of our value for £ with macroscopic results suggests
that this bulk concept is still valid even at microscopic
length scales.

In conclusion, we have used laser tweezers to manipu-
late a two-dimensional colloidal crystal at microscopic
length scales by dragging a probe particle through the
crystal. Simultaneously measuring the drag force and
monitoring the change in the microscopic structure has
enabled us to establish a quantitative relation between the
observed shear thinning and the local melting of the crys-
tal. The fact that the surface area of the locally melted
region grows as v*/?2 directly leads to drag force being
proportional to v'/2. Based on this relation, values for the
melting energy per particle and the Young’s modulus of the
crystal were found, which suggests that these macroscopic
concepts are still valid at length scales comparable to the
particle size. We believe that our experiments confirm the
direct connection between flow properties like shear
thinning and the microstructure. It would therefore be
very exciting to extend these measurements to other com-
plex materials such as glasses, ceramic suspensions, and
biological systems, though quantifying the change in the
microstructure in noncrystalline systems might be more
cumbersome.
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