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We study dilute magnetic impurities and vacancies in two-dimensional frustrated magnets with

noncollinear order. Taking the triangular-lattice Heisenberg model as an example, we use quasiclassical

methods to determine the impurity contributions to the magnetization and susceptibility. Most impor-

tantly, each impurity moment is not quantized but receives nonuniversal screening corrections due to local

relief of frustration. At finite temperatures, where bulk long-range order is absent, this implies an

impurity-induced magnetic response of Curie form, with a prefactor corresponding to a fractional moment

per impurity. We also discuss the behavior in an applied magnetic field, where we find a singular linear-

response limit for overcompensated impurities.
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Impurities have been established as a powerful means to
both probe and tune bulk properties of correlated-electron
materials. In quantum magnets, nontrivial phenomena in-
clude vacancy-induced magnetism in quantum paramag-
nets [1] and quantum percolation [2]. Single-impurity
behavior has been predicted to be exotic in quantum criti-
cal magnets, where a universal fractional Curie moment
appears at low temperatures [3–5]. Isolated impurities in
magnets with long-range order have been studied as well,
with most works focusing on the square-lattice Heisenberg
magnet [3,4,6,7].

This Letter is devoted to impurities in geometrically
frustrated spin-S magnets which order noncollinearly—a
topic which has received little attention [8]. As we show
below, vacancies (i.e., nonmagnetic impurities) in noncol-
linear magnets display a behavior which is richer and
qualitatively different compared to their collinear counter-
parts. In particular, the magnetic moment m associated
with a single vacancy is not quantized, in contrast to the
collinear case [3] where it is locked tom ¼ S. This effect is
already present at the classical level: nearby spins readjust
their directions in response to the vacancy, reflecting that
frustration is locally reduced. This partially screens the
vacancy moment, with the screening cloud decaying alge-
braically due to Goldstone modes.

At zero temperature, the direction of the vacancy mo-
ment m is fixed by the bulk magnetic order. In contrast, at
T > 0 in two dimensions (2D) there is no long-range order
due to the Mermin-Wagner theorem, and the vacancy mo-
ment is free to rotate. This rotation is classical, as it is
coupled to a rotation of the bulk spins surrounding the
vacancy [3,4]. As a result, the linear-response susceptibil-
ity has a singular piece, �impðTÞ ¼ m2=ð3kTÞ, correspond-
ing to the Curie response of a fractional moment for each
vacancy [9]. For the triangular-lattice Heisenberg antifer-
romagnet (AFM) with nearest-neighbor interactions, we
find in a 1=S expansion

m ¼ �0:040Sþ 0:196þOð1=SÞ; (1)

where a negative sign reflects overcompensation; see be-
low. In stark contrast to fractional effective moments found
at bulk or boundary quantum critical points [3,5,10], the
present mechanism is realized deep inside the renormal-
ized classical regime [11] of a 2D magnet.
A magnetic field h has two effects which tend to com-

pete: it orients the impurity moment parallel to the field
and it induces a macroscopic bulk moment. This bulk-
boundary competition is governed by a field-induced
length scale lh / 1=h and limits the linear-response regime
[12]. For an overcompensated impurity in the triangular
lattice, we find this competition to be particularly drastic:
Linear response breaks down at any finite field.
In the body of this Letter, we sketch the derivation of

these results and propose tests and extensions of the non-
trivial screening advocated here. Our considerations quali-
tatively apply to a large class of frustrated AFMs with
noncollinear ground states, which are unique up to global
spin rotations. For definiteness, we will present results for
the spin-S triangular-lattice Heisenberg model

H ¼ X

hiji
½J ~Si � ~Sj þ Kð ~Si � ~SjÞ2� � h

X

i

Szi : (2)

The biquadratic exchange [13], with its strength parame-
trized by k ¼ K=ðJS2Þ, generates a family of models and,
in particular, lifts the accidental classical degeneracy of the
nearest-neighbor AFM in an applied field [14]. In zero
field, the ground state is given by the familiar coplanar

120� ordering at wave vector ~Q ¼ ð4�=3; 0Þ for �2=9<
k< 2=9.
Vacancy in the ground state of a classical noncollinear

magnet.—Consider a bulk AFM with geometric frustra-
tion, where not all energetic constraints (e.g., all neighbor-
ing spins pairwise antiparallel) can be satisfied. Removing
a single spin locally reduces frustration due to the
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elimination of constraints. For a noncollinear magnet, this
seeds a readjustment of spin directions.

For the triangular lattice, this readjustment is illustrated
in Fig. 1(a), which shows the ground state of a finite system
of size L2 with L ¼ 51, where a single spin has been
removed. The spins remain coplanar and rotate by angles
�� relative to the original 120� configuration, such that
the spins near the vacancy tend to be more antiparallel.
��ð ~riÞ shows a sixfold (f-wave) angular symmetry and
is consistent with a spatial decay of ��ðrÞ / 1=r3,
Fig. 1(b) [8].

This result is rationalized as follows: The rotation pattern

can be understood as the response of the system to a field ~h
which couples to the six neighbors of the vacancy such that
these spins are rotated towards an antiparallel configuration.

Hence, the field ~h acting on these six sites is locally trans-
verse and alternating, in a rotated frame compactly written

as ~h
P6

j¼1 �jS
x
j , with �j ¼ ð�1Þj. The long-distance rota-

tion is determined by a transverse susceptibility, which is
dominated by the modes near the ordering wave vector with
linear dispersion !q. Formally, this susceptibility is the

Fourier transformation of a spin-wave propagator supple-
mented by matrix elements, which eventually gives

��ðrÞ / R
ddqei ~q� ~r�q=!

2
q / 1=rdþ1, where �q / q3 and

one factor !q arises from spin-wave coherence factors.

The state with a single vacancy has a finite magnetiza-
tion m. While this would simply be m ¼ S without read-
justed angles (i.e., in the collinear case), the readjustment
tends to screen this moment. For the triangular lattice, the
numerical result, obtained from integration over the
screening cloud, is m=S ¼ �0:0396ð3Þ, i.e., the missing
spin is overcompensated such that the total moment points
in the direction of the removed spin. The value of m is
nonuniversal, i.e., depends on details of the Hamiltonian:

Fig. 2(a) shows m=S as a function of the biquadratic
exchange coupling K in Eq. (2).
Vacancy: 1=S corrections.—Quantum corrections to the

classical T ¼ 0 results can be obtained using spin-wave
theory. Holstein-Primakoff bosons a are introduced to
capture deviations from the classical state in the presence
of a vacancy, Fig. 1(a). Upon expressing the Heisenberg
model in terms of the a bosons, terms linear in a vanish as
required. Linear spin-wave theory amounts to a diagonal-
ization of the quadratic-in-a piece of the Hamiltonian,
which has to be done numerically for finite lattices [15]
due to the inhomogeneous reference state. From the spec-
trum we can calculate 1=S corrections to thermodynamic
observables as well as response functions.

The local magnetization correction �mð~riÞ ¼ hayi aii
decays to the known bulk value of �mb ¼ 0:26 [16] at
long distances, corresponding to a staggered magnetization
of mb ¼ S� 0:26. The impurity contribution, �mð~riÞ �
�mb, indicates enhanced quantum corrections near
the impurity which fall off as 1=r3, consistent with the
Goldstone-mode expectation. The 1=S correction to the
uniform moment associated with the vacancy is obtained
from integration, �m ¼ P

i�mð ~riÞ cos�ð ~riÞ, which evalu-
ates to �m ¼ 0:196, Eq. (1). Further corrections at higher
orders in 1=S will not qualitatively modify the result of a
nonuniversal fractional value of m, but apparently both
overcompensation and undercompensation may occur,
depending on S and microscopic details. We note that
local impurity-induced magnetization corrections obeying
�mð ~riÞ � �mb / 1=r3 also occur in the collinear square-
lattice case, but here spin conservation demands that the
integral �m vanishes; hence m remains locked to S [4,6].
Finite temperatures: Fractional Curie response.—For

T > 0 in two space dimensions, long-range bulk magnetic
order is destroyed by thermal fluctuations, with the
correlation length � being exponentially large at low
temperatures, T � J. Consequently, the direction of theb)a)
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FIG. 1 (color online). (a) Classical ground-state spin configu-
ration of the triangular AFM with vacancy, showing the spin
readjustment near the vacancy; the dashed arrows indicate the
original 120� order. (b) Rotation angle j��jðrÞ along a high-
symmetry line for k ¼ 0 and L ¼ 51, together with the asymp-
totic power law �� / 1=r3. The inset shows the same data (solid
line), together with j��ðrÞj at finite field h=J ¼ 0:5 (dashed
line), 1.0 (short dashed line), 1.5 (dash-dotted line), all for k ¼
�0:05, for one sublattice in a log-linear plot. The exponential
(instead of power-law) decay for h > 0 is obvious.

a) b)

-0.1 -0.05 0 0.05 0.1

k

-0.2

-0.1

0

0.1

0.2

m
 / 

S

0 5×10-3 10-2

T / S 2

0

5

10

χ i
m

p(
T

)

10-5 10-4 10-3

1

10

FIG. 2 (color online). (a) Effective vacancy moment m=S for
the classical triangular Heisenberg AFM as function of the
biquadratic exchange k in Eq. (2). (b) Monte Carlo results for
�imp as function of T=S2, calculated with JS2 ¼ 1 and k ¼ 0.

The dashed line shows the predicted Curie law m2=ð3kTÞ (3)
with jm=Sj ¼ 0:04. The inset shows the low-T data in a log-log
plot. The data in (a) [(b)] have been obtained for systems of size
L ¼ 51 [L ¼ 9; 12]; finite-size effects are negligible.
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impurity moment is no longer fixed but is free to rotate with
the local orientation of the bulk magnetic domain sur-
rounding the impurity. It has been shown both analytically
[3,4] and numerically [7] that this rotation is classical and
leads to a linear response of the Curie form:

�impðTÞ ¼ m2

3kT
þOðT0Þ; (3)

where the subleading term receives a multiplicative loga-
rithmic correction in 2D [4,7,17].

In the noncollinear case, the partial screening of the
vacancy moment, established above for T ¼ 0, will remain
intact at smallT > 0 because of the large correlation length.
This implies a Curie response (3) corresponding to a frac-
tional moment per vacancy. This central result is fully borne
out by numerics: we have performed classical Monte Carlo
simulations of triangular-lattice Heisenberg magnets, using
the standardMetropolis algorithm. In Fig. 2(b) we show the
result for the impurity susceptibility �imp, obtained from

subtracting the linear response � of a system with vacancy
from that of a system without vacancy. While the high-
temperature part is difficult to analyze given the error bars,
the low-temperature data clearly show a Curie divergence,
with a prefactor consistent with jm=Sj ¼ 0:04 within error
bars. For S <1, we expect a subleading logT contribution
to �impðTÞ arising from Goldstone modes similar to the

collinear case; a detailed analysis will appear elsewhere.
Vacancy versus extra spin.—Thus far, we have consid-

ered the special case of a vacancy, experimentally obtained
by replacing a magnetic by a nonmagnetic ion. A different
type of impurity is an extra spin of size S0, coupled to a
single site of the bulk with a Heisenberg coupling J0. For
antiferromagnetic J0 � J and S ¼ S0, the impurity spin
and its bulk partner lock into a singlet, and we recover the
vacancy case. On the other hand, for J0 � J the readjust-
ment of the spin directions due to the impurity will be
parametrically small in J0=J, and we expect for the impu-
rity moment m ! S as J0 ! 0. Hence, varying J0=J leads
to a continuous change of m.

Finite magnetic field.—For the square-lattice AFM, it
has been shown that a vacancy in an applied field generates
spin textures in its vicinity, which result from the competi-
tion between aligning the vacancy moment and inducing a
bulk moment [12]. Here we investigate the noncollinear
case on the triangular lattice. As the nearest-neighbor
Heisenberg model has an accidental degeneracy of
classical ground states at finite fields, which is lifted in
favor of coplanar states [Fig. 3(a)] both by quantum and
thermal fluctuations [18,19], we choose to investigate the
classical model with biquadratic exchange, Eq. (2) with
�2=9< k< 0, which leads to the same coplanar finite-
field phases as the ones selected by fluctuation effects.
(Noncoplanar states are favored for 0< k< 2=9.)

Qualitatively, the vacancy physics strongly differs be-
tween the undercompensated and overcompensated cases.
For undercompensation, Fig. 3(b), a small field will orient

the system such that the vacancy sublattice points antipar-
allel to the field. This is compatible with the field-induced
bulk state; hence, a strong competition between bulk and
boundary effects is absent, and the zero-field limit will be
smooth.
This is different in the overcompensated case, where

orienting the vacancy moment in field direction is incom-
patible with the bulk state. Our numerics shows that the
system chooses a compromise such that the vacancy sits in
one of the sublattices directed approximately parallel to the
field, with a significant distortion near the vacancy,
Figs. 3(c) and 3(d). This distortion falls off exponentially
(there is no coupling to the remaining Goldstone mode),
with a length scale lh / 1=h [12], Fig. 4(b). Most impor-
tantly, the zero-field limit is singular in this case; i.e., the
distortion pattern for h ! 0 does not recover its zero-field
structure. This is seen in the insets of Figs. 1(b) and 4(a).
The latter shows mimpðhÞ, defined as the difference of the

total magnetizations with and without vacancy. By con-
struction, mimpðh ¼ 0Þ ¼ jmj and mimpðh ! 1Þ ¼ �S.

Figure 4(a) demonstrates that mimpðh ! 0Þ again repre-

sents a fractional impurity moment which is different
from jmj in the overcompensated case.
The evolution of mimpðhÞ through the bulk magnetiza-

tion plateau is also very different in the undercompensated
and overcompensated cases, Figs. 3(b) and 3(c). While
it is smooth for undercompensation, a jump occurs at h ¼
3J in the overcompensated case, Fig. 4(a). This signals
a transition where the vacancy site ‘‘switches’’ the sublat-
tice: As the vacancy is immobile, this implies that its
presence induces a first-order bulk phase transition, which,
however, is only accompanied by nonextensive changes in
thermodynamic observables, due to the Z3 symmetry
underlying the bulk plateau phase.

a)

0 h

b)

c)

FIG. 3 (color online). (a) Schematic evolution of the three-
sublattice coplanar bulk spin configurations as function of ap-
plied field for the triangular AFM, with the 1=3 magnetization
plateau shaded. These states are selected out of the classical
k ¼ 0 ground-state manifold of H (2) by both thermal and
quantum fluctuations as well as negative small k. A single
vacancy chooses one of the sublattices: (b) undercompensated
and (c) overcompensated case. In (c), an impurity-induced
quantum phase transition occurs inside the plateau phase.
[Note that undercompensation does not occur in our family of
classical models with k < 0 but is expected for S <1 from
Eq. (1).] (d) Spin configuration with (overcompensated) vacancy,
calculated for h=J ¼ 1:0, k ¼ �0:05, and L ¼ 51.
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Finite impurity concentration.—We finally discuss the
measurable consequences of our findings in the realistic
case of a finite impurity concentration nimp. Assuming that

the impurities are distributed equally over all sublattices,
their moments tend to average out at T ¼ 0 and h ¼ 0. This
behavior persists at finite T, provided that � � limp where

limp ¼ n1=dimp is the mean impurity distance. In the opposite

limit, � � limp, the impurity moments fluctuate indepen-

dently, and their response simply adds up. Hence, observing
fractional Curie response of independent impuritymoments
is possible at elevated T and small nimp [9]. Note that

elevated fields which induce lh � limp also lead to an

effective decoupling of multiple impurity moments, which,
however, are polarized in this limit. The spin rearrangement
predicted to occur inside the plateau phase for overcompen-
sated impurities is detectable by local probes likeNMR, and
also via an order-nimp jump in the bulk magnetization.

Conclusions.—For impurities in noncollinear magnets,
our main result is a partial screening of the impurity
magnetic moment, leading to a fractional Curie response
at low temperatures in the 2D case. We have evaluated the
vacancy moment for the spin-S triangular-lattice AFM in a
1=S expansion, but we expect our qualitative results to be
valid for any frustrated AFM with a noncollinear ground
state (which is unique up to global spin rotations).

Our predictions could in principle be verified by large-
scale numerical studies in analogy to Refs. [5,7]; however,
quantum Monte Carlo approaches are plagued by the sign
problem which is serious for most frustrated AFMs.

On the experimental side, one can expect the physics
described here to be generically realized, as Curie tails in
�ðTÞ due to impurities are routinely observed in magnets. A

quantitative analysis of these tails in samples with a known
concentration of impurities would allow one to extract the
fractional moment size m (in a regime where interactions
between the impurity moments are small); our prediction is
m � S in contrast to the behavior in collinear magnets.
An interesting open question is how the fractional mo-

ment advocated here evolves upon approaching a quantum
critical point of the bulk magnet, where at criticality a
universal fractional response is expected. Our results also
call for investigations of vacancies in frustrated collinear
magnets where vacancies may induce noncollinear spin
textures in order to reduce frustration.
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FIG. 4 (color online). (a) Impurity contribution to the magne-
tization, mimpðhÞ=S, as function of applied field h, for the

classical triangular AFM (2) with k ¼ �0:05. The shaded region
corresponds to the bulk 1=3 magnetization plateau. The inset
shows a zoom onto the small-field region; squares (crosses) are
data for L ¼ 51 (L ¼ 21). The circle at h ¼ 0 represents the
linear-response value jm=Sj, demonstrating the breakdown of
linear response for this overcompensated case. (b) Field-induced
length scale lhðhÞ obtained from an exponential fit to ��ðrÞ for
L ¼ 51, together with the anticipated lh / 1=h behavior (dashed
line). Finite-size effects are important for small h > 0 where
lh � L is violated.
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