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K3 picene is a superconducting molecular crystal with a critical temperature of Tc ¼ 7 or 18 K,

depending on the preparation conditions. Using density functional theory we show that electron-phonon

interaction accounts for Tc 3–8 K. The average electron-phonon coupling, calculated by including the

phonon energy scale in the electron-phonon scattering, is � ¼ 0:73 and !log ¼ 18:0 meV. Intercalant and

intermolecular phonon modes contribute substantially (40%) to � as also shown by the isotope exponents

of potassium (0.19) and carbon (0.31). The relevance of these modes makes superconductivity in K-doped

picene peculiar and different from that of fullerenes.
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Most materials made of organic molecules are not met-
als as the valence bands are completely filled and separated
by the conduction band. However, the discovery in 1980 of
superconducting tetra-methyl-tetra-selenium-fulvalene [1]
demonstrated the possibility to induce superconductivity
by intercalation of large organic molecules with inorganic
anions, serving as acceptors or donors. This general rule
was confirmed by the discovery of superconductivity in
alkali-doped fullerenes [2] with transition temperatures
(Tc) up to 40 K in Cs3C60 [3].

The field was renewed recently with the discovery of
superconductivity in potassium- (K-)intercalated molecu-
lar solids based on polycyclic aromatic hydrocarbons, such
as picene [4] (Tc ¼ 7 K or Tc ¼ 18 K [5]), phenantrene
[6] (Tc ¼ 5 K), and coronene [7] (Tc ¼ 15 K). These sys-
tems are very appealing as they exist in a large variety, and
it is possible to tune their properties in many ways. For
instance, the chemistry and functionalization of polycyclic
hydrocarbons is well known and relevant for environmen-
tal and medical issues [8], the intercalation with alkali
atoms is often possible, and the electrochemical doping
in picene field-effect transistors has been achieved [9].

In addition, organic molecular crystals are particularly
appealing for technological applications such as organic
light emitting diodes, field-effect transistors, or solar cells.
Consequently, the study of charge injection and carrier
transport in these materials is central to the understanding
and improvement of such devices. In particular, the study
of the electron-phonon coupling interaction is crucial to
describe the different regimes of charge transport [10].

In molecular crystals, the electrons can couple to three
kinds of vibrations: intramolecular, intermolecular (rigid
translations and rotations of molecules), and intercalant
phonons. In alkali-dopedC60, after a long debate [2,11–14],
it has been established that superconductivity is driven
mainly by intramolecular modes. This conclusion is also

supported by the negligible Rb isotope effect measured in
Rb3C60 [15,16]. However, the situation could be substan-
tially different in K-doped picene (K3C22H14) where amore
prominent role of intercalant modes in superconductivity is
suggested by the significant hybridization of the low-energy
bands with K atoms observed in density functional theory
(DFT) [17]. Indeed, the electronic structure of K3C22H14 is
different from that obtained by a rigid doping of the picene
crystal without explicit K ions [17]. Thus, at the moment, it
is still unclear (i) if superconductivity in K3C22H14 is
phonon mediated, and (ii) if the intramolecular phonons
alone provide enough coupling or if intercalant and inter-
molecular vibrations should also be considered.
These questions were first addressed in an early DFT

calculation [18] where a sizable electron-phonon coupling
was found, dominated by high-energy intramolecular
in-plane carbon (C) vibrations at 1000 cm�1. However,
this work uses a rigid-band doping approximation of the
pristine picene crystal structure and thus neglects the
molecular relaxation after intercalation, the K contribution
to the electron-phonon coupling, and the screening of the
electron-phonon deformation potential by the metallic
bands. Furthermore, only modes above 100 cm�1 were
considered.
In this Letter, we perform first-principles DFT calcula-

tions on the superconducting properties of K3C22H14.
Removing all possible a priori approximations we de-
monstrate the critical role played by the intercalant and
intermolecular modes in the electron-phonon coupling
mechanism to account for the experimental Tc. We give a
numerical prediction of the isotope exponents in the
molecular crystal and relate them to the phonon-mediated
superconductivity.
We compute the electronic structure of K3C22H14 within

DFT in the local density approximation (LDA) [19]. We
relax the molecular geometry in the P21 symmetry in the
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experimental unit cell [4,21], obtaining a structure similar
to that of [17] with the molecules arranged in a herringbone
configuration and the intercalants aligned parallel to the
molecular planes [22].

The band structure of K3C22H14 is reported in Fig. 1.
The molecular nature of the compound gives rise to very
narrow bands �kn, with bandwidth �� of few tenths of eV.
The Fermi level �F in K3C22H14 crosses the bands origi-
nating from the second lowest unoccupied molecular orbi-
tal (LUMOþ 1) states of the undoped molecule, which are
entangled to those coming from the LUMOþ 2 states, and
very close to the ones belonging to the LUMO bands. The
bandwidth �� has the same order of magnitude as the
characteristic phonon frequency !ph [the logarithmic pho-

non average !log ¼ 18 meV, calculated in this work (see

below)]. The density of states (DOS) varies substantially in
the range ½�F �!log; �F þ!log�, as shown in Fig. 1.

We carry out phonon calculations in the density func-
tional perturbation theory framework [24]. We consider
phonon momenta on a Nq ¼ 2� 2� 2 grid. We get

dynamically stable phonons, signaling a well converged
phonon dispersion!q� and no structural instabilities in the

chosen geometry. In Fig. 2(c) we report the projected
phonon DOS, �Sð�Þ ¼ P

q�e
�
q� � P Seq��ð!q� � �Þ, where

the phonon eigenstates eq� are 3N-dimensional vectors,

with N the number of atoms, and the projector P S is a
3N � 3N tensor. We split the full phonon space into po-
tassium (K), hydrogen (H), in-plane (C¼) and out-of-plane
C? carbon S subspaces (the plane is the one containing
each picene molecule). We also consider partitioning into
K, intermolecular, and intramolecular vibrations. The pro-
jections reveal the presence of the K and intermolecular
modes at low frequencies, while only a very small fraction
of intramolecular modes is present below 200 cm�1. On
the other hand, the in-plane C and H modes occupy the
high-energy part of the DOS. We compute the phonon
spectrum also for the neutral isolated molecule, Fig. 2(d).

The low-energy spectrum of molecule and crystal differ
considerably. In the solid the rigid-body rototranslations
(intermolecular modes) are spread up to 300 cm�1, while
in the molecule they are pinned at zero frequency. In
addition we observe in the crystal a significant spectral
weight transfer of the low-energy out-of-plane C oscilla-
tions to higher frequencies.
For each phonon mode �with momentum qwe compute

the electron-phonon interaction:

�q� ¼ 2

!2
q�Nð0ÞNk

X

k;n;m

jg�kn;kþqmj2

� ðfkn � fkþq;mÞ�ð�kþq;m � �kn �!q�Þ; (1)
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FIG. 1. DFT-LDA band structure of K3C22H14 near the Fermi
level. The DOS per spin per cell (comprising two picene mole-
cules) is shown in the right-hand panel. Note the strong DOS
variation in a range of �@!log from the Fermi energy, with the

characteristic phonon frequency !log ¼ 18 meV.
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FIG. 2 (color online). (c),(d) Phonon DOS of K3C22H14 crystal
and picene molecule, respectively. The DOS is projected on
phonon subspaces S which correspond to hydrogen (H), potas-
sium (K), out-of-plane and in-plane carbon (C? and C¼) modes.
The black solid curve is the sum of K and intermolecular modes.
In (d) the black line is absent as there is no K and all phonons are
intramolecular, except for the six rototranslational modes at zero
frequency. We do not show the C-H stretching modes, which do
not couple to electrons and are located around 3050 cm�1, well
above the frequency range plotted. (a),(b) �ð!Þ and �2Fð!Þ
resolved by projections on H, K, C?, and C¼ phonons. �ð!Þ
ramps up by 90% in the first 300 cm�1. The black solid line is
the sum of K and intermolecular modes, which contribute to
40% of the total �.
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that couples the occupied state jk; ni of momentum k and
band n with the empty state jkþ q; mi separated by the
phonon energy!q�. The k summation in Eq. (1) is over the

Brillouin zone on a Nk electron-momentum mesh, and
Nð0Þ (¼ 6:2 eV�1) is the electron DOS per spin per cell
at the Fermi level. The electron-phonon matrix elements

are g�kn;kþqm ¼ P
se

s
q� � ds

nmðk;kþ qÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ms!q�

p
, where

esq� is the three-dimensional q� eigenphonon component

on the sth atom with massMs, and d
s
nmðk;kþqÞ¼hkþq;

mj�V=�uqsjk;ni, with �V=�uqs the deformation potential

for a given phonon displacement qs of the sth atom. In
Eq. (1), fkn are Fermi functions depending on the tem-
perature T, and the expression for �q� has been evaluated

by a T ! 0 extrapolation. In the ‘‘adiabatic’’ limit, namely,
for !ph � ��, where �� is the bandwidth, the expression

for �q� in Eq. (1) reduces to the one proposed by Allen

[25], and generally used in previous electron-phonon
estimates:

�AD
q� ¼ 2

!q�Nð0ÞNk

X

k;n;m

jg�kn;kþqmj2�ð�k;nÞ�ð�kþq;mÞ: (2)

We dub �AD in the equation above as ‘‘adiabatic,’’ while �
in Eq. (1) is ‘‘nonadiabatic.’’

The electron-phonon matrix elements g�kn;kþqm are com-

puted on a highly dense electron-momentum grid by means
of the recently developed Wannier interpolation formalism
[26–30]. This allows one to perform converged calcula-
tions with a delta function Gaussian smearing � much
smaller than the bandwidth�� [31]. Surprisingly, the exact
zero-smearing extrapolation leads to a strong electron and
phonon-momentum dependence in g, and also in � and
�AD. This is in contrast to the conventional molecular
crystal picture, where g and the electron-phonon coupling
are independent of the electron and phonon momenta.
To quantify this dependence, we evaluated the coupling
strength average per molecule, given by 2�AD

q Nð0Þ=Jq,
where Jq ¼ P

k;n;m�ð�k;nÞ�ð�kþq;mÞ=Nk is the nesting fac-

tor, �AD
q is summed over the phonon modes, and the factor

of 2 accounts for the number of molecules in the unit cell.
One obtains the phonon-momentum integrated average
value of 172 meV, with large variations of �40% as a

function of the phonon momentum [23]. A detailed analy-
sis of the dependence of � on q and � is presented in [23].
In Table I, we report our results for the electron-phonon

coupling. There is a difference between the adiabatic and
nonadiabatic values, as !ph � ��, and one must keep the

full expression in Eq. (1) for an accurate estimate of �. In
Table I, we also report the phonon frequency logarithmic
average (!log).

An estimate of Tc is given by the McMillan
formula [32], which requires �, !log, and the screened

Coulomb pseudopotential ��. With �� 2 ½0:1; 0:2� (see
Supplemental Material [23]), we obtain Tc in the range
3–8 K, which includes the value of 7 K reported in [4] for
one of the two phases of K3C22H14 [5]. Caution must be
taken in using the McMillan formula, as the on-site
molecular correlation can be important with respect to
the bandwidth [18,33], and also nonadiabatic effects in
the vertex corrections can invalidate Migdal’s theorem
[34]. However, our estimate of Tc is an indication that
the electron-phonon coupling is strong enough to explain
the mechanism behind the manifestation of the supercon-
ducting phase. We also computed the isotope exponents
�ðXÞ ¼ �d logTc=d logMx (see Table I) for all constitu-
ents of the molecular crystal. It turns out that the role of H
is negligible, while the large exponent of potassium (K)
points toward the important role played by the intercalant
in the electron-phonon coupling to set the value of Tc.
For a given value of �� our predicted Tc are more

than 8 times smaller than that predicted with � and !log

found in [18]. This comes mainly from the value of !log

(1021 cm�1) in [18], very different from our best estimate
of 18 meV (145 cm�1). This large discrepancy may come
from the intercalation driven structural change not consid-
ered in that work. Indeed, the electronic DOS ofK3C22H14,
computed in the rigid-doping approximation with the
undoped geometry, is 14:12 eV�1 per spin per cell (two
molecules per cell) [17,18], a value 2.3 larger than that
found here and in [17] for the relaxed geometry with K. In
addition, [18] neglects the screening of the electron-phonon
interaction by the metallic bands, and the contribution of K
phonons and of vibrations of energy lower than 100 cm�1.
To understand our findings, we compute the Eliashberg

function �2Fð!Þ¼P
q��q�!q��ð!�!q�Þ=ð2NqÞ, plotted

TABLE I. �, phonon frequency logarithmic average !log, McMillan critical temperature Tc

(obtained with �� in the range of 0.1–0.2), and isotope exponents (for �� ¼ 0:14), computed
based on the electron-phonon coupling expression in Eq. (1) (nonadiabatic), which explicitly
includes the phonon energy ! in the electron-phonon scattering process, and the one in Eq. (2)
(adiabatic), which is a !ph=�� ! 0 approximation of Eq. (1). The nonadiabatic values are our

best estimates of the various quantities. In parentheses, we show the accuracy of � due to the
integration error over the discrete 23 q grid (see [23] for details).

� !log (meV) Tc (K) �� 2 ½0:1; 0:2� � (C) � (K) � (H)

Adiabatic 0.88(0.21) 25 8–16 0.32 0.13 0.05

Nonadiabatic 0.73(0.11) 18 3–8 0.31 0.19 0.00
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in Fig. 2(b), and the integral �ð!Þ¼2
R
!
0 d!

0�2Fð!0Þ=!0,
shown in Fig. 2(a), which gives the total electron-phonon
coupling � ¼ P

q��q�=Nq in the ! ! 1 limit. We note

that �ð!Þ converges very rapidly to a large fraction of the
total value in the first 300 cm�1.

We then decompose � into a set of phonon subspaces S,
as we did for the phonon DOS, as in [35]. The evaluation

of the projected electron-phonon matrix elements gS ¼
P

sðP Seq�Þs � ds
nmðk;kþ qÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ms!q�

p
follows straight-

forwardly, and the corresponding projected �S;S0
q� reads:

�S;S0
q� ¼ 2

!2
q�Nð0ÞNk

X

k;n;m

gSg
?
S0 ðfkn � fkþq;mÞ

� �ð�kþq;m � �kn �!q�Þ; (3)

where for the sake of readability we dropped out the

momentum and orbital indexes from gS. � ¼ P
S;S0�

S;S0 ¼
P

S;S0
P

q;� �
S;S0
q� , and the contribution of each subspace S is

computed as
P

S0�
S;S0 , where we add both the diagonal term

and the usually very small off-diagonal contributions. The
sum over K and intermolecular modes is shown in Fig. 2
as a black solid line. It gives ð40� 3Þ% of the total �,
with half of it due to the alkali intercalant, and the corre-
sponding �2Fð!Þ localized at small frequencies (up to
300 cm�1). The error comes from the discrete integration
over the q grid and is very small in the ratio [23]. The
intramolecular phonons contribute to the remaining 60%,
with the main role played by the out-of-plane C modes.
This is a remarkable result, and shows that K3C22H14 is
far from being a prototype molecular crystal. The electron-
phonon coupling is only partially supported by intramolec-
ular phonons, and the q dependence of the electron-phonon
coupling is strong.

To summarize, we found that in K3C22H14 the electron-
phonon coupling is large enough to explain the experimen-
tally measured Tc of 7 K. Despite the molecular nature of
the crystal, a significant contribution to the coupling is
given by the dopant and intermolecular phonon modes,
which account for 40% of the total �. This has a strong
impact on the isotope exponent of potassium, whose value
turns out to be large (close to 0.20), and represents an
experimentally accessible signature of the importance of
nonintramolecular modes. Our work shows that there are
fundamental differences between the families of picene
and fullerene. The demonstration of the importance of
coupling between the electrons at the Fermi level with
intermolecular and intercalant low-energy phonon modes
will also have a relevant contribution to the developing
of transport theories, usually accounting for the local
electron-phonon coupling (intramolecular coupling) and
considered in a small-polaron theory of narrow bands.
Extensions to include nonlocal couplings (intermolecular
coupling) are required [36]. This opens the way to a more
comprehensive view on superconductivity, transport, and

other phenomena in the larger and larger group of recently
discovered materials based on metal-intercalated aromatic
hydrocarbons.
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