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We present a scaling theory for charge transport in disordered molecular semiconductors that extends

percolation theory by including bonds with conductances close to the percolating one in the random-

resistor network representing charge hopping. A general and compact expression is given for the charge

mobility for Miller-Abrahams and Marcus hopping on different lattices with Gaussian energy disorder,

with parameters determined from numerically exact results. The charge-concentration dependence is

universal. The model-specific temperature dependence can be used to distinguish between the hopping

models.
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Disordered organic molecular semiconductors (OMSs)
are widely used in organic devices such as organic light-
emitting diodes [1,2]. Charge transport in these materials
occurs by hopping of charge carriers between neighboring
molecules. Understanding the effect of disorder on the
dependence of the charge mobility � (the average velocity
of a charge carrier divided by the electric field) on tem-
perature T and carrier concentration c is crucial for mod-
eling the electronic processes in organic light-emitting
diodes. In the Gaussian disorder model, proposed by
Bässler, the disorder in these semiconductors is modeled
by a Gaussian distribution of on-site energies [3].
This model provides a description of the T dependence
of� for vanishing carrier concentration. It was later shown
that the dependence of � on c actually plays a crucial role
[4,5]. Based on a numerically exact approach, a parame-
trization of the mobility function �ðT; cÞ was constructed
by Pasveer et al. [6]. However, this approach did not
provide fundamental understanding of the form of this
function. Furthermore, it is debated whether the Miller-
Abrahams (MA) hopping rates [7] used in that work are
appropriate for OMSs. Finally, it is not clear what the effect
of the particular lattice (simple cubic) used is on the
results.

Recent first-principles studies of charge transport in the

OMS tris(8-hydroxyquinoline) aluminum (Alq3) [8–10],

with morphologies determined from molecular-dynamics

simulations, indicate that the molecular energies indeed

follow a Gaussian distribution and that hopping occurs

between nearest-neighbor molecules on a random lattice.

Marcus hopping rates [11] were used with transfer inte-

grals and a reorganization energy Er (the energy gain of

the atomic arrangement of a molecule adapting to the

presence of a charge) determined from quantum-chemical

calculations.

Charge transport in OMSs can be analytically described
by effective-medium [12–14] and percolation theories
[15–18]. The hopping system is then often considered as
a random-resistor network. The idea of percolation theo-
ries is that at low temperatures, when due to the disorder
the spread in resistances is large, the conductivity is de-
termined by a single critical bond in this network. This
critical bond has a conductance Gcrit such that all bonds
with conductance G � Gcrit just form a percolating cluster
[15]. However, the results of percolation theories do not
agree quantitatively with the numerically exact results
[18], the reason being that also bonds with conductances
around Gcrit influence the conductivity. Dyre and Schrøder
introduced the term ‘‘fat percolation’’ for this and applied
this concept to ac conduction [19].
In this Letter, we develop a scaling theory based on the

concept of fat percolation that accurately describes the
mobility function �ðT; cÞ. Our goal is twofold: (i) to pro-
vide fundamental understanding of charge transport in
OMSs and (ii) to provide a general and compact expression
for �ðT; cÞ that can be used in the modeling of organic
devices. The parameters in this expression are found from
numerically exact results obtained with the master-
equation (ME) method, explained in Ref. [6]. At the con-
sidered carrier concentrations of at most a few percent, the
ME method properly accounts for the dominant effect of
Coulomb interactions, which is to prevent the presence of
two carriers on one site. We consider MA as well as
Marcus rates with nearest-neighbor hopping and an uncor-
related Gaussian energy disorder with width �. The influ-
ence of the lattice structure is investigated by considering
next to simple cubic also fcc lattices and the effect of lattice
disorder on the transfer integrals.
The mapping of the hopping problem onto a random-

resistor network [15] leads, for the case of small F that we
will consider, to bond conductances
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Gij ¼ GðEi; EjÞ ¼
e2!symm
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where EF is the Fermi energy, which is determined by T
and c through the Gauss-Fermi integral, e the electronic
charge, and kB Boltzmann’s constant; !symm

ij ¼ !symm
ji are

symmetric hopping rates that depend in a way specified
below on the energy difference �Eij ¼ Ej � Ei between

sites j and i. The approximation Eq. (1b) is valid for
sufficiently low EF, which, as we will see later, corre-
sponds to c & 0:03. The mobility � follows by applying
a voltage V ¼ FL over a slab of thickness L of this net-
work and determining the current by applying Kirchhoff’s
laws. For a square lattice (for demonstration purposes, two-
dimensional) and Marcus hopping rates with Er ! 1, the
current and dissipated power thus obtained are shown in
Fig. 1. At a high temperature [Fig. 1(a)], the current and
power distributions are very homogeneous. At a low tem-
perature [Fig. 1(c)], there is one percolating path visible,
where a single critical bond with conductance Gcrit, indi-
cated by the arrow, dissipates almost all the power and
therefore almost fully determines the current. In standard
percolation theory, the conductivity is taken to be propor-
tional to Gcrit. However, at intermediate temperatures
[Fig. 1(b)], there are multiple bonds with conductances
aroundGcrit contributing to the dissipation and determining
the current. This is the essence of fat percolation.

Inspired by this, we now proceed as follows. At not too
high temperatures, only a small number of bonds with
conductances close to Gcrit determine the network conduc-
tivity. This number is to a good approximation quantified
by fðGcritÞ, where fðGÞ is the conductance probability
density function. As a consequence, the mobility � can
then depend only on Gcrit and fðGcritÞ. From a dimensional
analysis and its definition, it follows that � must be of the

form � ¼ Gcrith½GcritfðGcritÞ�=N2=3
t ec, with h some di-

mensionless function that depends on the type of hopping

and lattice and Nt the site density. Since percolation is a
critical phenomenon, we take as a scaling ansatz for h a
power law expression, leading to

� ¼ A
1

N2=3
t ec

Gcrit½GcritfðGcritÞ��; (2)

where the prefactor A and the critical exponent � depend
on the type of hopping and lattice but not on T or c.
In Fig. 2, we validate the above scaling ansatz (solid

curve) by a direct comparison of the T dependence of �
with numerically exact results obtained by using the ME
method (symbols). Marcus hopping is used with Er ! 1,
a simple cubic lattice, and a carrier concentration of
c ¼ 10�2 carriers per site. Expressions for Gcrit and
fðGcritÞ are given below. The numerical data can be ex-
cellently fitted by Eq. (2) for �=kBT * 1 with A ¼ 1:8 and
� ¼ 0:85. We also include in Fig. 2 the results of standard
percolation theory (dotted curve). It is clear that the scaling
approach leads to an enormous improvement. For
�=kBT & 1, not only fðGcritÞ but the whole distribution
fðGÞ becomes important, and the approach fails. In this
region, the mobility is accurately given by a simple
effective-medium theory [12] (dashed curve).
To explicitly determine Gcrit and fðGcritÞ, we must spec-

ify !
symm
ij in Eq. (1). For Marcus hopping rates [11],

we have !symm
ij ¼ !0 expð��E2

ij=4ErkBTÞ, with !0 ¼
ðJ20=@Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ErkBT

p
expð�Er=4kBTÞ and J0 the transfer in-

tegral. For MA rates [7], we have !
symm
ij ¼

!0 expð�j�Eijj=2kBTÞ, where !0 is now a temperature-

independent factor times J20 . All results for � are given in

terms of!0, where we should remember that in the Marcus
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FIG. 1. Normalized current (line thickness) and dissipated
power (line opacity; see the legend) in bonds of a 15� 15 square
lattice of sites with Gaussian energy disorder of width �. The
results shown are for Marcus hopping with reorganization energy
Er ! 1, carrier concentration c ¼ 10�5, and three different
temperatures T. A small electric field is applied from left to
right. The arrow indicates the critical bond.

FIG. 2 (color online). Dependence of mobility � on T for
Marcus hopping with Er ! 1 on a simple cubic (SC) lattice,
for c ¼ 10�2. Green triangles: ME. Green solid curve: Scaling
ansatz, Eq. (2), with A ¼ 1:8 and � ¼ 0:85. Blue dotted curve:
Standard percolation theory, scaled to match the ME mobility at
�=kBT ¼ 3. Red dashed curve: Effective-medium theory
[Eq. (5.4) in Ref. [12]].
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case !0 depends on T and Er. Later, we will allow J0 and
hence !0 to vary per bond to account for lattice disorder.

We are now ready to derive an expression for Gcrit. For a
given lattice, we can find Gcrit by adding bonds of decreas-
ing conductivity until a percolating cluster is formed. We
note that the dependence of the bond conductivity
GðEi; EjÞ on Ei and Ej in Eq. (1b) is of the form

exp½�EðEi; EjÞ=kBT� for both MA and Marcus hopping,

where E is an energy function of Ei and Ej that does not

depend on T or c. We can then conclude that instead of
considering Gcrit we can also consider the critical value
Ecrit of EðEi; EjÞ, which does not depend on T or c either.

We now find

Gcrit ¼ e2!0

kBT
expf½EFðT; cÞ � Ecrit�=kBTg: (3)

The values of the critical energy Ecrit for the different
types of hopping and lattices are listed in Table I. It may
be verified that for MA and Marcus hopping Ecrit and
Ecrit þ Er=4, respectively, are the highest energies of sites
participating in the critical bonds.

We also need an expression for fðGcritÞ. By constructing
the distribution of conductances from Eq. (1b), we find

GcritfðGcritÞ ¼ D

�̂
; (4)

where D is a constant that does not depend on T or c, and
�̂ � �=kBT. Combining Eqs. (2)–(4) yields a general and
compact expression for the mobility according to our
scaling theory:

�0ðTÞ ¼ B
e!0

N2=3
t �

�̂1�� exp

�
� 1

2
�̂2 � Ecrit

kT

�
; (5a)

�ðT; cÞ ¼ �0ðTÞ 1c exp

�
EFðT; cÞ
kBT

þ 1

2
�̂2

�
; (5b)

where B � AD and �ðT; cÞ ! �0ðTÞ when c ! 0. This
mobility function can be readily used to compute device
characteristics in a drift-diffusion approach [20].
From fits to the ME results, we have determined the

parameters A, B, and �, listed in Table I, for the two
different types of hopping and lattices. We also include
the value of the percolation threshold pc, i.e., the fraction
of participating bonds when percolation just occurs.
Figure 3 shows that in all four cases the quality of the fit
is excellent. In the case of Marcus hopping, the parameters
depend on the reorganization energy Er. However, we
found that A and � depend only weakly on Er; the values
of A and � for Er ! 1 given in Table I can also safely be
used at finite Er. The dependence of the percolation thresh-
old pc on Er cannot be neglected, but pc can be found from
a percolation analysis, not requiring ME calculations. The
values of pc for different Er are listed in Table I, as well as
the resulting values of B and Ecrit. For typical values of T
and c, Fig. 4(a) shows that the dependence of � on Er is
well described by this approach. We note that the depen-
dence of !0 on Er leads to a net decrease of � with Er.
We now consider the effect of lattice disorder, which is

caused by the random molecular packing in OMSs
[8,9,21]. Because of the exponentially decaying wave
functions, we vary the transfer integral J0 per bond accord-
ing to J0;ij ¼ expðuijÞJ0, where uij ¼ uji is uniformly

distributed between �� and �, with the parameter �
controlling the lattice disorder strength. It is not a priori
clear that Eq. (5) can be applied, but we can still determine
Gcrit and fðGcritÞ from a percolation analysis and apply
Eq. (2), assuming no dependence of A and � on �. The
results of this approach are compared with ME results for
typical values of T and c in Fig. 4(b); we see that the
scaling theory still provides an excellent description of the
mobility, even for large disorder � ¼ 6. We also note that
for � & 3 the mobility is almost independent of �, so that
Eq. (5), valid for � ¼ 0, can still be applied in this case.
An important conclusion drawn from Eq. (5b) is that the

dependence of � on c is in all cases given by
exp½EFðT; cÞ=kBT�=c, containing no parameters depending

TABLE I. Percolation threshold pc, prefactor A, and critical
exponent � in Eq. (2), and prefactor B and critical energy Ecrit in
Eq. (5a), for MA and Marcus hopping on SC and fcc lattices. For
Marcus hopping, A and � are in good approximation indepen-
dent of the reorganization energy Er. The last column gives the
value C in a fit �0ðTÞ / expð�C�̂2Þ to Eq. (5a) in the range
2 � �̂ � 6, with �̂ ¼ �=kBT.

Lattice Hopping Er½�� pc A � B Ecrit½�� C

SC MA � � � 0.097 2.0 0.97 0.47 �0:491 0.44

SC Marcus 1 0.139 1.8 0.85 0.66 �0:766

SC Marcus 10 0.131 0.63 �0:748 0.69

SC Marcus 3 0.118 0.59 �0:709 0.49

SC Marcus 1 0.104 0.51 �0:620 0.44

fcc MA � � � 0.040 8.0 1.09 0.7 �0:84 0.40

fcc Marcus 1 0.058 8.0 1.10 1.2 �1:11

fcc Marcus 10 0.054 1.1 �1:09 0.66

fcc Marcus 3 0.048 1.0 �1:06 0.45

fcc Marcus 1 0.042 0.8 �0:98 0.40

FIG. 3 (color online). (a) Dependence of � on T for different
hopping rates and lattices, for a typical c. (b) Dependence on c,
for a typical �=kBT. Symbols: ME. Curves: Scaling theory,
Eq. (5), with values of B, �, and Ecrit as given in Table I. For
clarity, all mobilities for Marcus hopping are multiplied by 100.
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on the type of hopping or lattice. For MA hopping, this
dependence was already found in Ref. [18]. We now con-
clude that it also holds for Marcus hopping, at variance
with a previous claim [14]. We note that our conclusion
agrees with the numerically exact mobilities, as shown in
Fig. 3(b). The above dependence is valid for c & 0:03; for
higher concentrations, the assumption of low Fermi energy
used in deriving Eq. (1b) no longer holds.

It has become common to fit the temperature depen-
dence of the mobility in organic semiconductors at low
carrier concentration c ! 0 to �0ðTÞ / expð�C�̂2Þ. From
Eq. (5a), we find that the general form is actually �0ðTÞ /
T� expð�b�̂2 � a�̂Þwith b ¼ 1=2 and a and � depending
on the type of hopping and lattice. For MA hopping, we
have a ¼ Ecrit=� and � ¼ �� 1, while for Marcus
hopping, accounting for the T dependence of !0, a ¼
ðEcrit þ Er=4Þ=� and � ¼ �� 3=2. In Ref. [18], an ex-
pression of the above form was found with a ¼ 0:566 and
� ¼ �1 for variable-range MA hopping, with, in agree-
ment with the present result, b ¼ 1=2 for nearest-neighbor
hopping. However, the sign of a found by us for MA
hopping (see Ecrit in Table I) is opposite to that in
Ref. [18], leading to a significantly different T dependence.
The finding that in the range 2 � �̂ � 6 the numerical
results for MA hopping on a simple cubic lattice can be
fitted with �0ðTÞ / expð�C�̂2Þ with C � 0:42–0:44 [3,6]
can now be understood as a good fit to the general expres-
sion in this range, with a negative a. Optimal fits of the
results for the considered cases in Table I (except for
Marcus hopping with Er ! 1) to ln�0ðTÞ / �C�̂2 in
this range yield values for C given in the last column.
The spread in the values shows that, when applied to
experimental results, such fits could be used to distinguish
between different types of hopping.

In conclusion, we have shown that charge transport
in molecular semiconductors with uncorrelated Gaussian
energy disorder is excellently described by a scaling
theory based on fat percolation. A general and com-
pact expression was given for the temperature and

carrier-concentration dependence of the charge mobility,
with parameters explicitly determined for Miller-
Abrahams and Marcus hopping on different lattices. We
have demonstrated the robustness of the results to lattice
disorder. The obtained carrier-concentration dependence is
universal. The temperature dependence is model-specific
and can therefore be used to distinguish between different
hopping models. We envisage that the scaling theory de-
veloped in this work can also be applied to other percola-
tion problems.
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