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Domain walls between superconducting and magnetic regions placed on top of a topological insulator

support transport channels for Majorana fermions. We propose to study noise correlations in a Hanbury

Brown–Twiss type interferometer and find three signatures of the Majorana nature of the channels. First,

the average charge current in the outgoing leads vanishes. Furthermore, we predict an anomalously large

shot noise in the output ports for a vanishing average current signal. Adding a quantum point contact to the

setup, we find a surprising absence of partition noise which can be traced back to the Majorana nature of

the carriers.
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Elementary excitations (often called quasiparticles) of
condensed-matter systems can show features that are not
displayed by the bare particles that they are composed
of. A striking example are quasiparticles that show neither
fermionic nor bosonic statistics but an intermediate ‘‘any-
onic’’ form [1]. Majorana fermions appearing at the core
of half-vortices in p-wave superconductors have been
predicted to exhibit anyonic statistics [2]. Theoretical pro-
posals to observe their existence in tunneling experiments
[3,4] were devised.

Recently, the possibility to realize Majorana-like quasi-
particles on the surface of a three-dimensional topological
insulator has attracted a lot of attention (see Ref. [5] and
references therein). It has been shown that the domain wall
of two superconducting regions support transport channels
for Majorana fermions [6], and the interface of supercon-
ducting and magnetic regions give rise to transport chan-
nels for chiral Majorana fermions [7,8].

Up to now, these new excitations have not been observed
experimentally, but a number of schemes to detect them
has been put forward. These include interferometric struc-
tures in which electrons are converted to Majorana fermi-
ons and back [7–10], as well as scanning probe devices
coupled to Majorana edge states that detect resonant
Andreev reflection [11]. Also the measurement of the
backaction of Majorana edge states to a coupled flux qubit
could provide a hint of their existence [12].

In the proposals using interferometry [7,8], the authors
considered a two-terminal Mach-Zehnder setup. A mag-
netic domain wall carrying chiral electronic excitations
meets a superconducting region, where the incoming elec-
tron channel is split into two chiral Majorana fermion
channels surrounding the superconductor. At the opposite
side of the superconductor, the Majorana channels re-
combine to form an outgoing chiral electron channel.
Depending on the phase change 2��=�0 between the

two Majorana arms that is determined by their geometric
length and the number of vortices threading the supercon-
ductor, an incoming electron is converted either to an out-
going electron or an outgoing hole. The effective flux �
threading the Mach-Zehnder interferometer includes the
actual magnetic flux due to vortices, as well as the dynami-
cal phase of the Majorana fermions; �0 ¼ h=e is the flux
quantum. The conductance G12, where 1(2) stands for the
incoming (outgoing) lead, is periodic in �=�0: G12 ¼
ðe2=hÞ cosð2��=�0Þ, at zero bias and low temperatures.
Negative conductances correspond to outgoing holes:
charge conservation is ensured because the superconductor
is grounded; i.e., this Mach-Zehnder interferometer is
actually a three-terminal device. This form of the conduc-
tance shows the same periodicity as a normal (nonsuper-
conducting) interference experiment. Hence, there is a
need for further signatures of Majorana physics beyond
the Mach-Zehnder setup.
The structure we have in mind is a Hanbury Brown-

Twiss (HBT) type interferometer built on the surface of a
topological insulator. This setup is inspired by recent
proposals [7–9,13] and is related to the two-particle
Aharonov-Bohm effect [14]. We calculate the current
cross-correlations in the two outgoing leads of this inter-
ferometer and predict the possibility to switch between
negative and positive current cross-correlations by tuning
the magnetic flux threading the superconductor. Positive
cross-correlations are remarkable since noninteracting fer-
mions will always show a negative sign [15]; see, however,
[16–18]. The cross-correlations are predicted to be
temperature-independent in a reasonable range of tempera-
ture and at low voltages. As in [9] we find that the cross-
correlations vanish when only one source is active as the
consequence of the transport through Majorana modes.
We then consider a setup that contains an additional

quantum point contact (QPC), similarly as in [7].
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Strikingly, the partition noise associated to the quantum
point contact is predicted to vanish, which is an evidence of
the neutrality, or equivalently, the Majorana nature, of the
charge carriers.

We propose to realize a Hanbury Brown-Twiss type
interferometer consisting of a grounded superconductor
surrounded by four magnetic domains, as shown in Fig. 1.

In the outer arms 1, 2, 3, and 4, Dirac electrons propa-
gate, while in the center arms A, B, C, andD, at the edge of
the superconductor, only Majorana chiral fermions exist at
energies below the induced superconducting gap �. The
incoming Dirac electrons are transformed into Majorana
fermions which partially circle the superconductor and are
converted back to Dirac electrons. This conversion process
has already been studied in [7,8] and is expected to be
perfectly symmetric: the Dirac electron is coherently split
into the two arms with equal probabilities. For the reversed
process, a single Majorana fermion is converted into a
superposition of an electron and a hole with equal proba-
bilities as well. An incoming electron can thus leave as
a hole, in which case a Cooper pair will flow into the
grounded superconductor. Figure 1 does not show the
backflow currents between terminals 4 and 1 (2 and 3):
since they are noiseless, they will not affect any of our
conclusions below.

In the following, we would like to study the conductance
and noise properties of the interferometer when varying
the magnetic flux, i.e., the number of vortices threading the
superconductor.

The Landauer-Büttiker formalism provides a straight-
forward analysis of this interferometer once we know its

scattering matrix [15]. The scattering properties of the
Dirac to Majorana converter were established and dis-
cussed in [7,8]. At zero energy, the full scattering matrix
is fixed by particle-hole symmetry. For small enough
energies E � ðvM=vFÞ� where vM is the Majorana fer-
mion velocity and vF the electronic Fermi velocity at the
surface of the bare topological insulator, the following
still holds
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The interferometric phase factor � ¼ ei2��=�0 ¼
ð�1ÞnveiE�L=@vM has been concentrated to the arm B by a
gauge choice. Here, nv is the number of vortices threading
the superconductor, �L ¼ LA þ LB � LC � LD where Li

is the length of arm i of the interferometer. The operator
ai (bi) is the annihilation operator of a Dirac electron
(hole) in lead i. The scattering matrix shown in Eq. (1) is
similar to the one obtained in [9], which, however, did not
consider the possibility of vortices.
For topological reasons, one-particle quantities are not

sensitive to the enclosed flux in this structure: because of
the chiral nature of the Majorana states, no one-particle
state will enclose the flux. One incoming electron or hole is
scattered with equal probability to a hole or an electron at
lead 2 or 4. The outgoing currents thus vanish on average.
This vanishing conductance is a first hallmark of Majorana
fermions: in a standard setup with Andreev processes this
could occur only accidentally, and small perturbations
would give rise to a nonzero conductance. This vanishing
conductance could in principle be due to an interrupted
circuit and has to be complemented by an additional mea-
surement of, e.g., the current autocorrelation discussed
below.
On the other hand, when both sources are active we

expect to see a manifestation of an interesting two-particle
Aharonov-Bohm effect [14] for Majorana fermions. As an
example consider two incoming electrons in leads 1 and 3

ay1a
y
3 ¼ �ðay2by2 þ�ay4b

y
4 Þ=2� ð�þ 1Þðay2ay4 � by2b

y
4 Þ=4

þ ð��þ 1Þðby2ay4 � ay2b
y
4 Þ=4: (2)

The current cross-correlations between leads 2 and 4 are
thus expected to be sensitive to the parity of the number nv
of enclosed vortices through the phase parameter �. In
particular, as shown later, it is possible to switch between
positive and negative cross-correlations by tuning the
magnetic field threading the superconductor. As a side
remark, note that post-selecting events with one fermion
per lead for � ¼ �1 yields maximally entangled pairs in
particle-hole space, and we can equivalently speak of
antibunching [13].
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FIG. 1 (color online). Hanbury Brown–Twiss type interfer-
ometer. A grounded superconductor surrounded by four mag-
netic domains is placed on the surface of a three-dimensional
topological insulator. The terminals 1, 2, 3, and 4 are connected
to the outside circuit and biased at potentials V1; . . . ; V4 respec-
tively. The magnetizations are chosen such that Dirac electron
states at leads 1, 2, 3, and 4 exist and propagate in the direction
of the double arrows. Electrons and holes can enter the interfer-
ometer at leads 1 and 3, Majorana fermions propagate along
the arms A, B, C, and D in the direction of the single arrows
and electrons and holes leave through leads 2 and 4. A magnetic
flux in the form of nv vortices threading the superconductor
will control the phase difference between the arms of the
interferometer.
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Assuming the reservoirs connected to the incoming
leads are specified by the electron and hole distribu-
tion functions ni;eðEÞ ¼ ½expððE� eViÞ=kBTÞþ 1��1 ¼
1� ni;hð�EÞ for lead i, we can give explicit expressions

for the current-current correlations. The current cross-
correlation between leads 2 and 4 S24 ¼ 1

2 hfI2; I4gi are of

special interest

S24 ¼ � e2

h

Z 1

0
dE<ð�ðEÞÞðn1;e � n1;hÞðn3;e � n3;hÞ;

(3)

which is sensitive to the magnetic flux through the real part
of�,<ð�Þ¼ ð�1Þnv cosE�L=@vM. At equilibrium S24¼0;
i.e., there is no thermal noise in this quantity (electrons and
holes compensate each other). This temperature indepen-
dence is expected to hold as long as kBT � ðvM=vFÞ�. For
voltages V2 ¼ V4 ¼ 0, V1 ¼ V3 ¼ V (with respect to the
potential of the superconductor), temperatures such that
kBT � eV and an approximately symmetric interferom-
eter, �L � @vM=eV,

S24 ¼ ð�1Þnvþ1 e
2

h

Z 1

0
dEðne þ nhÞ ¼ ð�1Þnvþ1 e

2

h
ejVj:

(4)

Thus, the sign of the cross-correlation is given by the parity
of the number of vortices. The possibility to achieve posi-
tive cross-correlations for fermions is attributed here to
electron-hole conversions.

We now look at the current autocorrelations in the out-
going leads. While the outgoing current is zero on average,
it is carried by electrons and (the same number of) holes.
Current fluctuations are thus expected to be relevant.
Indeed,

S22 ¼ e2

h

Z 1

0
dE½n1;e þ n1;h þ n3;e þ n3;h

� ðn1;e þ n1;hÞðn3;e þ n3;hÞ�: (5)

At zero bias, this reduces to the usual Johnson-Nyquist

noise S22 ¼ 4e2

h kBT, while for voltages V2 ¼ V4 ¼ 0,

V1 ¼ V3 ¼ V and kBT � eV, we obtain the shot noise

result S22 ¼ e3

h jVj, which is 4 times larger than the maxi-

mal expected shot noise due to a beam splitter of chiral
electrons. This remarkable result can be explained by
noting that in each scattering event both outgoing electrons
and holes contribute to the charge fluctuations, while
giving a zero average current as a consequence of the
perfect electron-hole symmetry imposed by the Majorana
conversion.

We would now like to discuss a second possibility to
obtain a signature of Majorana fermions by adding a QPC
to the previous setup; see Fig. 2(a). A novel feature will
appear in the noise properties, which we want to study in
the same spirit as in the previous section.

As explained in [7], the transmission and reflection
amplitudes t, r of the QPC can be strongly tuned by
altering the geometry of the QPC itself, or by changing
the phase difference ’ between the two superconducting
parts. A narrow constriction would be dominated by direct
tunneling and thus hardly sensitive to the phase difference.
Therefore, the geometry we want to consider is closer to a
line junction supporting a nonchiral Majorana channel on
its own. By changing ’ ¼ ’1 � ’2 from ’ ¼ 0 to ’ ¼ �,
the channel appearing at the interface of the two super-
conductors can be tuned from closed (t � 1) to fully open
(t & 1) at zero energy. For intermediate values of the
phase, the channel is gapped and the transmission ampli-
tude strongly depends on energy.
We would first like to look at the limiting cases. For

t ¼ 1, r ¼ 0, the upper and lower channels are not con-
nected by the QPC. As a consequence, the setup effectively
reduces to two independent copies of a Mach-Zehnder
interferometer between terminals 1 and 2 (3 and 4) [see
Fig. 2(b)]. The full current-current correlation matrix
SMZþMZ for the outgoing leads is easy to obtain in that
case: the cross-correlations vanish since they are not
connected in any way, and the autocorrelations are given
in Table I. For t ¼ 0, the setup is equivalent to the
HBT interferometer of the previous section, whose corre-
lation matrix SHBT is given by Eqs. (3) and (5). At inter-
mediate values of t, we use the same formalism as for the
HBT setup, taking the QPC into account in the scattering
matrix:

a)

1

M M

M

M
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2
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t

ϕ
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r r
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1
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2

FIG. 2 (color online). (a) Modified Hanbury Brown–Twiss
interferometer. Majorana excitations will propagate along the
boundaries of the two triangular superconducting structures with
phases ’1, ’2. An additional short gapped channel appears at the
domain wall between the two superconducting regions, forming
a quantum point contact characterized by reflection and trans-
mission amplitudes r, t. The setup is similar to the one proposed
in Ref. [7]. (b) In the fully transmissive case, t ¼ 1, r ¼ 0, the
device splits into two separate Mach-Zehnder interferometers,
one of which is shown here.
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Here, �1ð2Þ is the interferometric phase factor for Majorana

fermions around the upper (lower) superconductor.
In this case, the average currents do not identically

vanish. In fact the conductances G12 ¼ G34 ¼ e2

h jtj are

proportional to the transmission amplitude. This allows
to experimentally access the QPC properties. The two
remaining conductances G14 and G32 still vanish.

We now focus on the quantities of interest, namely, the
current-current correlations S22, S44, and S24. Proceeding
through the usual steps, the resulting 2� 2 correlation
matrix, for the two outgoing leads, at fixed energy can be
decomposed as

S ¼ R� SHBT þ T � SMZþMZ; (7)

where R ¼ jrj2 and T ¼ jtj2 are the reflection and trans-
mission probabilities of the QPC. The QPC effectively
interpolates between the two limiting cases: surprisingly,
there are no mixed terms proportional to RT; in other
words, while there are the (auto and cross-correlation)
noise terms related to the HBT and MZ interferometer
present in the structure, there is no partition noise. This
is one of the main results of our Letter and is deeply rooted
in the Majorana nature of the excitations transported along
the boundaries of the superconductor.

In the following we give an intuitive explanation of this
remarkable feature of Eq. (7). Partition noise in the context
of an electronic beam splitter is due to the transport of
charge in discrete units. An incoming electron is coher-
ently split into, e.g., two channels, and in a current
measurement the electron will contribute to the current in
one, and only one, outgoing channel. The splitting thereby
induces current fluctuations proportional to the charge of
the electron. Majorana fermions, on the other hand, fail to

generate electric current fluctuations since they are neutral.
We thus believe that the absence of electronic partition
noise predicted by Eq. (7) is a signature of channels
supporting Majorana fermions. Importantly, this absence
occurs while the QPC is proven to actually scatter the
fermions because of the dependence on R and T.
Our results for the zero-temperature conductance and

noise properties of normal electron and Majorana inter-
ferometers in a two-terminal (Mach-Zehnder) and four-
terminal (Hanbury Brown–Twiss) setup are summed up
in Table I.
In conclusion, we have analyzed a Hanbury Brown-

Twiss type interferometer for Majorana fermions. We
have calculated its conductance and noise properties. The
sign of the cross-correlations of the outgoing currents of
the interferometer is predicted to be positive if the parity
of the number of vortices threading the superconductor is
odd. Our main results are three signatures for the Majorana
nature of the transport channels defined by domain walls
between superconducting and magnetic regions placed on
the surface of a three-dimensional topological insulator.
On the one hand, the average charge current in the out-
going leads vanishes since there are symmetric probabil-
ities for outgoing electrons or holes; see the discussion
before Eq. (2). This vanishing conductance needs to be
complemented by a check that the structure is functional,
which is provided by the finite current autocorrelation. On
the other hand, we find a finite zero-temperature shot noise
at the output port of the interferometer even for a vanishing
average current reflecting the finite fluctuations of the
Majorana particle around charge neutrality. Finally, our
calculations predict the absence of electronic partition
noise in a quantum point contact, whereas the parameter
dependence of the scattering matrix proves that the point
contact actually scatters the fermions. These signatures
will be an important help in verifying the existence of
Majorana excitations in interferometric structures at the
surface of topological insulators.
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[15] M. Büttiker, Phys. Rev. B 46, 12 485 (1992).
[16] T. Martin, Phys. Lett. A 220, 137 (1996); M. P. Anantram

and S. Datta, Phys. Rev. B 53, 16 390 (1996).
[17] J. Börlin, W. Belzig, and C. Bruder, Phys. Rev. Lett. 88,

197001 (2002).
[18] P. Samuelsson and M. Büttiker, Phys. Rev. Lett. 89,
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