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We perform a detailed experimental study of the band excitations and tunneling properties of ultracold

fermions in optical lattices. Employing a novel multiband spectroscopy for fermionic atoms, we can

measure the full band structure and tunneling energy with high accuracy. In an attractive Bose-Fermi

mixture we observe a significant reduction of the fermionic tunneling energy, which depends on the

relative atom numbers. We attribute this to an interaction-induced increase of the lattice depth due to the

self-trapping of the atoms.
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Quantum gases in optical lattices have proven to be a
versatile model system to investigate unsolved many-body
problems from condensed-matter theories in a highly con-
trolled fashion [1]. The tunability of interaction strength,
lattice depth, and lattice geometry makes these systems
particularly well suited to explore the dependencies
and limits of anticipated models such as the Hubbard
Hamiltonian [2,3]. In particular, fermionic quantum gases
have attracted much interest over the last years due to their
close analogy to electrons in crystals. This led, e.g., to the
observation of Fermi surfaces [4], antibunching [5], and
the fermionic Mott insulator [6,7]. At the same time,
quantum gases in optical lattices allow us to realize com-
pletely new systems like mixtures of bosonic and fermionic
atoms where several exotic phases have been predicted.
Among them are density waves [8], supersolids [9], and
polaronic quasiparticles [10]. Pioneering experiments
found a pronounced shift of the bosonic Mott insulator
transition [11–13] and more recently a renormalization
of the on-site interaction [14]. The realization of these
systems over a broad range of parameters has extended
the theoretical interest. There is a controversial debate on
the correct theoretical description of Bose-Fermi mixtures:
Various models have been discussed, including adiabatic
heating during the lattice loading [15], an effective poten-
tial approach including the admixture of higher bands
[13,16], and an extended Hubbard model with nearest-
neighbor interactions [17]. Multiband effects were also
found to be crucial in pure bosonic and fermionic systems
with strong interactions [18,19]. For a complete compari-
son with experiments, it is important to independently
measure both the effective on-site interaction and the
effective tunneling, where the latter has not been directly
observed in experiments yet.

In this Letter, we study the tunneling properties of
ultracold fermions in optical lattices with high accuracy.
This is done for pure spin-polarized fermions and for
attractive mixtures of fermionic potassium and bosonic
rubidium atoms. As a key result, we directly observe an

interaction-induced change in the effective lattice depth
and thus a reduction of the fermionic tunneling energy J
due to the bosonic component [20]. We explain this in an
effective potential picture where a mutual self-trapping of
both species is expected [13,16]. For these measurements
we apply a novel multiband spectroscopy for fermions in
optical lattices based on lattice modulation and a subse-
quent band mapping. Similar to ARPES in solid state
physics, our method can accurately resolve the excitation
spectrum with full momentum resolution. This allows for
the determination of the lattice depth and the tunneling
energy with high accuracy but is also promising to study
excitons as well as nonequilibrium dynamics of particle
and hole excitations.
We prepare a spin-polarized ultracold mixture of

bosonic 87Rb and fermionic 40K atoms in a crossed optical
dipole trap with typically 105 fermions at a temperature
below 0:2 Tf and 2� 105 atoms in the BEC. The dipole

trap is operated near the magic wavelength at 811 nm,
compensating the differential gravitational sag, with an
average trap frequency of �! ¼ 2�� 50 Hz. We super-
impose a 3D optical lattice with beam waists of 200 �m
and � ¼ 1030 nm, which we ramp up in 100 ms. Note that
the rubidium atoms experience an approximately 2.5 times
stronger lattice than the potassium atoms with respect to
their recoil energies due to the different masses and detun-
ings. In the following, the lattice strength will be denoted
in fermionic recoil energies Er ¼ @

2k2L=2m with the mass
m of 40K and the lattice vector kL ¼ 2�=�. Depending on
the lattice depth, the fermionic ground state is a metal or
band insulator [4,7] while the bosons form a superfluid or
Mott insulator.
The spectroscopy is performed as follows (see Fig. 1):

We excite the system to higher bands by modulating the
depth of the optical lattice in one direction for 1 ms with a
variable frequency and a typical modulation depth of 15%
[21,22]. Because of the different curvature of the individ-
ual bands, only a specific quasimomentum class of atoms
can be resonantly excited at a fixed modulation frequency.
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Finally, we map the quasimomentum distribution onto real
momenta by ramping down the optical lattice nonadiabati-
cally in 200 �s, suppressing band transitions [23]. The
ramp is designed to be much faster than the trap dynamics
to prevent redistribution within each band. Because of the
finite ramp time, however, the distribution is smoothed out
at the zone boundaries [24] [see Fig. 1(c)]. We investigate
the resulting momentum distribution after a time-of-flight
of typically 20 ms thus spatially separating different bands
and momenta. Applying off-resonant modulation, the
atoms stay in the ground state and occupy the first
Brillouin zone [see Fig. 1(c)]. If the modulation frequency
corresponds to a transition energy, a specific momentum
class is excited to a higher band and mapped onto its
corresponding Brillouin zone creating a hole within the
first Brillouin zone [see Fig. 1(d)]. Note that, in contrast to
localized particle-hole states in the Mott insulating regime
[6], we create particle-hole excitations in momentum
space. Varying the modulation frequency gives access to
the full band structure with full momentum resolution.

To demonstrate the capabilities of this method, we first
apply it to the well-known case of a pure noninteracting
fermionic sample in an optical lattice as shown in Fig. 2.
Experimentally, we measure the energy difference between
the first band and the excited bands, obtaining all informa-
tion to deduce the full band structure. The outcoupled
particles correspond to the extended zone scheme of the
band structure. The rise of the band gap and the corre-
sponding flattening of the dispersion are clearly visible at
the edge of the Brillouin zones. The holes represent the
quasimomenta of the outcoupled atoms and thus the band
structure within the reduced zone scheme in a textbooklike

manner. Note the inverted curvature of the second band,
which becomes apparent in the reversed dispersion of the
holes. To our knowledge, this is the first experimental
observation of the full band structure for ultracold fermions
in optical lattices.
To analyze the band structure quantitatively, we deter-

mine the center-of-mass of the outcoupled atoms in the
time-of-flight pictures and extract the corresponding mo-
menta for all applied modulation frequencies. The result is
shown exemplarily in Fig. 3(a) for the third band at a lattice
depth of 11 Er with the fermions forming a pure band
insulator. The momentum transfer is given in units of
kBZ ¼ 2�=�. We estimate the lattice depth of the system
by a least square fit of a homogeneous 1D band structure
(red solid line) to the experimental data. In our data, we
clearly observe a deviation of the excitation spectrum from
the homogeneous case, particularly at small and large
momenta. We attribute this to a combination of two effects:
First, there is a broadening of the quasimomentum distri-
bution of the eigenstates due to the inhomogeneity of the
system. Second, in our data analysis, for the case of quasi-
momenta close to the zone edges, our center-of-mass deter-
mination leads to a systematic shift of the spectroscopic
signal away from the edges of the Brillouin zone. Including
this effect, we find good qualitative agreement comparing
our full data set to a numerical linear response calculation
of a finite 1D system including the harmonic confinement
(black dashed line). In particular, the bending of the spec-
troscopic signal at the zone edges is well reproduced. For a
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FIG. 2 (color online). Momentum-resolved band structure of
noninteracting fermions in an optical lattice of 5 Er: Shown are
the column densities of the momentum distributions for different
modulation frequencies. Atoms in the first Brillouin zone are
represented by the central plateau. Missing particles are holes,
representing the reduced zone scheme. Narrow peaks at higher
momenta are the outcoupled particles, representing the extended
zone scheme.

FIG. 1 (color online). (a) Experimental sequence.
(b) Experimental procedure in momentum space. (c) Typical
absorption image and column sum with nonresonant modulation.
The atoms occupy the first Brillouin zone. (d) With resonant
modulation: Particle-hole excitations are clearly visible.
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specific range of momenta the effect of the inhomogeneity
is negligible. Therefore, we restrict the fitting to our data to
a momentum range between 0.55 and 0:85 kBZ. From this
fit we can determine the lattice depth with very high
accuracy. The dominant errors of about 2% are of a system-
atic nature, given by the spatial dependence of the lattice
depth due to the Gaussian shape of our lattice beams. For
noninteracting particles, the lattice depth fully determines
the tunneling energy. The fitted value of 11:3ð2Þ Er corre-
sponds to J=h ¼ 67ð3Þ Hz. In addition to the dispersion
relation we count the number of transferred atoms in the
corresponding Brillouin zone, shown as a histogram in
Fig. 3(b). It has a maximum at low momenta and is small
where the signal bends away from the homogeneous dis-
persion as expected.

We now turn to our main results, investigating the influ-
ence of interspecies interaction on the fermionic band
structure: We apply our spectroscopy method to study an
attractive mixture of bosonic 87Rb atoms in the state j1; 1i
and fermionic 40K atoms in the state j9=2; 9=2i. In this
system, interaction effects represented by the strong attrac-
tive interspecies scattering length abf � �215a0 between
40K and 87Rb [25] and the repulsive bosonic scattering
length abb � 100a0, play a crucial role. We choose lattice
depths such that the rubidium atoms form a Mott insulator
and the potassium atoms form a band insulator. Because of
the 2.5 times higher lattice depth the tunneling energy of
the bosons is very small, while the fermions experience a
moderate lattice potential with high tunneling energies.
We describe this situation in an effective potential
picture [13,16]: If a boson and a fermion are at the same

lattice site, the attractive interaction leads to an enhanced
localization and thus a suppression of the tunneling. This
can be described as an effective potential which is propor-
tional to the respective density of the other component.
Since both species mutually influence each other, this is
called self-trapping. The local deformation of the wave
functions can be interpreted as the admixture of higher
bands. The resulting potential for the fermionic atoms due
to the admixture of bosons is sketched in Fig. 4(a). In a
homogeneous system with a fixed number of rubidium
atoms per site the effective potential for the fermions has
the same periodicity as the original lattice but the effective
lattice depth is significantly increased. Here, for the first
time, we are able to directly observe this interaction
shift for different mixture ratios of potassium and rubid-
ium. To maximize the signal-to-noise ratio, we restrict our
measurements to the third band, which has the highest
excitation rate.
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FIG. 3 (color online). (a) Extracted dispersion of the third
band. Red circles are the center-of-mass of the excited atoms.
The dashed line is an inhomogeneous 1D calculation, reproduc-
ing the data qualitatively. The red solid line is a fit to the data for
0:55< q< 0:85kBZ with a homogeneous 1D band structure.
Shaded areas show the dispersion for slightly different lattice
depths. (b) Histogram showing the relative number of out-
coupled atoms.

FIG. 4 (color online). (a) Sketch of the effective potential for
different bosonic fillings. Fermions are more tightly bound if
attractive bosons are added. (b) Shift of the outcoupled momen-
tum against the relative atom number NRb=NK at 5 Er at a fixed
modulation frequency of 34 kHz. Lower outcoupled momenta
correspond to a deeper lattice. The shaded area is a guide to the
eye. (c) Fermionic band structure for different bosonic admix-
tures. The red squares correspond to NK ¼ 5:7� 104, the green
diamonds to NK ¼ 5:3� 104 and NRb ¼ 1:56� 105, and the
blue circles to NK ¼ 2:2� 104 and NRb ¼ 2:63� 105. Solid
lines are fitted dispersions. (d) Histogram showing the relative
number of outcoupled atoms.
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A detailed scan of the third band is shown in Fig. 4(c).
The purely fermionic system (red circles) at a lattice depth
of 7:6 Er shows the typical characteristics at low momenta,
which can be qualitatively understood as in Fig. 3. The
admixture of bosons leads to a clear shift of the band
structure and a suppression of the excitation fraction. For
moderate atom numbers with a bosonic Mott insulator of
one and two atoms per site, there is a small but distinct
overall shift of the spectroscopic signal (green diamonds).
Using the same fit as for the pure fermionic case, we obtain
a lattice depth of 8:2 Er. This is consistent with the theo-
retical prediction without correlation effects. For higher
particle numbers a third shell with three bosons per site
emerges. In this case, the spectroscopic signal shows large
deviations from the simple model (blue squares). We at-
tribute this to the increased inhomogeneity of the effective
potential due to the bosonic shell structure. If we fit a band
structure as before, we obtain a lattice depth of 9:2 Er,
which is consistent with an interaction shift induced by
three bosons per site. We also observe a pronounced de-
crease of the excited fraction for low modulation frequen-
cies as shown in Fig. 4(d). At energies below the fitted
dispersion the excitation is not resonant for fermions with
three bosons per site. Thus, only fermions with a lower
bosonic occupation per site contribute to the excitation
which manifests itself in a significantly lower excited
fraction. Assuming the fermions as still noninteracting,
we can derive their tunneling energy from the lattice depth
with a simple calculation. We obtain values for J=h of
160 Hz, 138 Hz, and 109 Hz for the three respective cases
showing a clear reduction of the fermionic tunneling due to
the admixture of bosons.

To investigate the particle-number dependence in more
detail, we performed a measurement at a fixed modulation
frequency for a shallow lattice of 5 Er [see Fig. 4(b)]. For
pure fermions, the modulation frequency of 34 kHz results
in a momentum of q ¼ 0:58kBZ. For an increasing admix-
ture of bosons the mean outcoupled momentum decreases.
This is consistent with the effective potential approach,
which predicts an increase of the effective lattice depth
as in Fig. 4(c). The nonlinear slope indicates enhanced
localization due to stronger correlation effects for higher
particle numbers.

In conclusion, we have performed a fully momentum-
resolved spectroscopy of ultracold fermions in optical
lattices for the first time. We have investigated a mixture
of fermions and localized bosons in an optical lattice and
observed an interaction-induced shift of the fermionic band
structure due to the attractive bosons as expected from
an effective potential approach. The effective lattice depth
was increased up to 20% while the corresponding
tunneling energy was reduced by more than 30%.
Further, we found evidence for a correlation induced en-
hancement of the interaction shift. As a complementary
measurement to [14], this is an important step for the

comparison with the theory. In agreement with [13,14],
we conclude that a simple single-band Hubbard model is
not sufficient for the realistic description of strongly
attractive quantum gas mixtures. Moreover, we observe a
confinement-induced deformation of the spectroscopy
signal at small momenta, consistent with numerical calcu-
lations. Our easy-to-implement spectroscopy method is
also promising for the investigation of interacting fermi
gases in optical lattices. It is, in particular, suited for band
gap excitations such as excitons and the dynamics of
particle and hole excitations.
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Note added in proof.—Recently, we became aware of

related work on bosons [26].
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