
Phase Coexistence and a Critical Point in Ultracold Neutral Plasmas

P.K. Shukla1,2 and K. Avinash3

1Ruhr University Bochum, D-44780 Bochum, Germany
2University of California San Diego, La Jolla, California 92093, USA

3Department of Physics & Astrophysics, Delhi University, Delhi 11007, India
(Received 18 April 2011; published 21 September 2011)

We show the existence of the liquid-vapor phase coexistence and a critical point for strongly coupled

ions in ultracold neutral (UCN) plasmas. Expressions for the free energy of UCN plasmas and an equation

of state for the ions are obtained in the mean field approximation. Avan der Waals-like isotherm shows the

existence of a critical point in UCN plasmas. Depending on the ion temperature, the ions are shown to

exist in a mixed vapor-liquid phase for a range of the ion Coulomb coupling parameter �i (defined by the

ratio between the ion interaction and the ion kinetic energies), and in a strongly coupled liquid state for

values of �i above this range. The estimates of critical constants show that it may be possible to observe

these phenomena in the present day UCN plasmas.
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Phase transitions or phase separations [1], which depend
on critical points and critical exponents controlled by
temperature, pressure, and the thermodynamic free energy
of a system, are unique phenomena that occur in a variety
of chemical and physical systems. The latter include the
early evolution of the Universe as the temperature cooled,
the core of Jupiter, a number of condensed matters, as well
as colloidal suspensions and many strongly coupled sys-
tems (e.g., dusty and ultracooled neutral plasmas). In fact,
the two emerging fields of the modern plasma physics,
namely, the dusty [2,3] and ultracold neutral (UCN) [4]
plasmas, are at the heart of physical sciences exploring the
new knowledge that holds the promise of industrial and
astrophysical applications. Recently, there has been a surge
in investigating numerous collective processes [5–8] in
UCN plasmas, which are created by the photoionization
of laser cooled atoms near the ionization threshold [9–11].
The electron temperature Te in most of the experiments
may be set anywhere from a few to a few tens of Kelvins by
suitably tuning the laser frequency just above the ioniza-
tion threshold, while the ion component, which receives
only a small momentum during this process may have the
temperature Ti in the range of milli-Kelvins. With these
initial temperatures and typical plasma number densities of
109–1010 cm�3, the Coulomb coupling parameters (CCPs)
for the electrons and ions lie in the range �e � 5–10 and
�i � 100, respectively. Hence, one of the early motivations
for UCN plasma experiments was to explore the possibility
of strongly coupled regimes at ultralow temperatures in
plasmas. However, UCN plasmas are created in a disor-
dered state that is far from thermal equilibrium. The con-
comitant disorder induced heating [12–15] causes a rapid
rise of the electron and ion temperatures (typically on the
time scale of the ion plasma period � few �s), thereby
limiting the strength of correlations in a state where the
electrons are weakly (or mildly) coupled with �e � 0:1,

and the ions are in a strongly coupled liquid phase with
�i � 2 [4]. Several methods have been proposed to alle-
viate this disorder induced heating and to take the electrons
and ions deep into the strongly coupled regime, such as by
ionizing and heating ultracold atoms with preset correla-
tions on a lattice [16].
However, even in the present moderately coupled states

[4], there are several interesting manifestations and chal-
lenges of strong coupling effects, which make them worthy
of investigation as a fundamental issue in UCN plasmas.
One of these is the oscillations in an initial relaxation of the
average ion temperature, which has fundamental implica-
tions for relaxation processes in a kinetic theory [17].
Furthermore, the propagation of ion-acoustic (IA) waves
in UCN plasmas has also been investigated both experi-
mentally [6] and theoretically [8]. Finally, collective inter-
actions in UCN plasmas should have potential applications
[4] for ion sources (e.g., ion milling), ion microscopy, and
seeding free-electron lasers [18].
In this Letter, we show the existence of a novel phe-

nomenon of a critical point (CP) and liquid-vapor phase
coexistence in UCN plasmas, which are of significant
interest for computer simulations (e.g., Refs. [11,12]) and
also for future laboratory experiments that are challenging.
Specifically, we will analytically demonstrate the existence
of a critical point and liquid-vapor coexistence in a
strongly coupled ion component in the quasiequilibrium
or near equilibrium phase of UCN plasmas. Earlier, a
number of authors carried studies of phase separations or
critical points for the Yukawa system [19–22]. Specifically,
in a series of papers, Hamaguchi et al. [23–25] formulated
the thermodynamics of the Yukawa system, and performed
molecular dynamics (MD) simulations to find phase sepa-
rations or critical points for solid-solid and liquid-liquid
transitions. In this Letter we study the liquid-vapor tran-
sitions in UCN systems.
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The existence of phase separations and CPs has also
been postulated in other nonequilibrium systems (e.g.,
dilute colloidal suspensions and ionic fluids [26–29], as
well as in complex (dusty) plasmas composed of highly
charged dust particles [30–33]).

According to the standard liquid state theory, the liquid-
vapor phase coexistence is driven by the presence of a
pairwise long-range attraction between particles (i.e.,
Lennard-Jones potential). Therefore, the existence of a
CP in systems with purely repelling particles, like nega-
tively charged microspheres in dusty plasmas and colloidal
suspensions and positively charged ions in UCN plasmas,
may appear somewhat surprising. However, it has been
shown [27,31,33] recently that the volume dependent co-
hesive fields due to the neutralizing plasma background or
the Debye sheath can drive phase coexistence in colloidal
suspensions [27] and in dusty plasmas [31,33]. Hence, the
presence of pairwise attraction between particles is only a
sufficient (and not necessary) condition for the liquid-
vapor phase coexistence. It may be driven by other factors
as well. In the case of UCN plasmas, we show here that
cohesive fields due to the weakly coupled electron back-
ground drives liquid-vapor phase coexistence in the
strongly coupled ion component.

In the following, we propose a mean field theory which
invariably is the first approach in calculating the critical
constants and exponents especially in new models, which
have not yet been probed by more rigorous methods. In our
theory, the system has only a long-range mean order. Short-
range order usually related to thermodynamic fluctuations
is ignored and theN body interactions are approximated by
one body interaction with an average mean field generated
by neighboring particles [1,34]. Admittedly, in some cases,
this approximation may not give very accurate estimates of
critical constants especially in low-dimensional models
where fluctuations near critical points become significant
[35] However, it does serve a useful purpose as it shows the
existence of a critical point and phase coexistence in UCN
plasmas. Once this is confirmed, then more rigorous and
complex approaches based on field theoretic calculations
and renormalization group analysis [35,36] can be under-
taken to obtain better estimates of critical constants.

It should be noted that UCN plasmas continuously ex-
pand and hence are not quite in equilibrium state at all
times. In fact, in the later stages of evolution when the
correlation time becomes smaller than the hydrodynamic
expansion time, the correlations freeze out leaving the
system in a nonequilibrium state [37]. However, numerical
simulations [9,37] show that the system does relax to local
thermal equilibrium on the time scale of few tens of !�1

pi ,

where !pi is the ion plasma frequency.

To calculate the equation of state for ions, we consider a
system of Ni discrete ions (strongly coupled) immersed in
a neutralizing weakly coupled background of Ne electrons,
such that the system is overall quasineutral, i.e., Ni ¼ Ne

in volume V. The ion charge is shielded by the electrons.
The shielded potential is given by the Yukawa potential

� ¼ q2i
4�"0r

exp

�
� r

�d

�
(1)

where qi is the ion charge, "0 the permittivity of free space,
�d ¼ ð"0�BTe=nee

2Þ the electron Debye radius, �B the
Boltzmann constant, and e the magnitude of the electron
charge. It should be noted that the Yukawa potential is
strictly valid [38] in the limit �d � a, where a is the mean
distance between the particles. However, experiments in
UCN plasmas [10] and MD simulations in dusty plasmas
[23–25] have indicated that the Yukawa potential gives a
good description of the system even when �d � a. The
Helmholtz free energy F of the electrons and ions will
typically consist of an ideal gaslike contribution due to the
thermal energy. Additionally, there will be a ‘‘Coulomb
energy excess,’’ which is the energy in excess of the
thermal energy due to the Coulomb interactions in such
systems.
We now proceed to obtain the free energy F for our UCN

plasmas, which is given by F ¼ U�P
�¼e;iT�S� whereU

is the internal energy while T and S are the temperature and
entropy. The total internal energy of the system is [23]

U ¼ 3

2
�BðNiTi þ NeTeÞ þ 1

2

Z
�c d�

� q2i
8�"0

XNj

j¼1

Z �ðr� rjÞ
jr� rjj d�; (2)

where � is the total charge density and c the electrostatic
(ES) potential and d� is the volume element. In the right-
hand side of (2), the first term gives the usual thermal
contributions, the second term gives the ES contributions,
while the third term subtracts the infinite self-energy of
discrete ions which is formally contained in the second
term. The charge density� and c satisfy Poisson’s equation

� "0r2c ¼ � ¼ qi
XNp

j¼1

�ðr� rjÞ � qne: (3)

Since the electrons are weakly correlated, their number
density is given by the Boltzmann distribution. Following
Hamaguchi and Farouki [23], we consider the electron
density to be linear in c , viz. ne ¼ �neð1þ q’=TÞ, where
’ ¼ c � �c , �c is the spatially averaged ES potential and
�ne ¼ Ne=V is the average electron number density. The
solution of Eq. (3) is

c ¼ ðqi=4�"0Þ
X
j

expð��djr� rjjÞ
jr� rjj ; (4)

where �d ¼ 1=�d. We now use � and c from Eqs. (3) and
(4) in the second term in Eq. (2) and perform the integration
with the delta function (after subtracting the singular term)
to obtain
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U ¼ 3

2
�BðNeTe þ NiTiÞ þ q2i

8�"0

X
i

X
j�i

expð��djri � rjjÞ
jri � rjj

� q2i Ni �ni
2"0�

2
d

� q2i Ni�d

8�"0
� "0�

2
d

2

Z
’2d�; (5)

where �ni is the average ion number density. In the right-
hand side of Eq. (5) the second term is the ion-ion interac-
tion energy, while the third term represents the energy due
to the uniform electron background. The fourth term gives
the energy due to the ion charge interacting with its own
Debye sheath, while the fifth term is due to the ion charge
interacting with the sheath of other ions. This expression,
which is valid only in the linear response approximation
[23], clearly shows that the ion interaction energy makes
contributions to the internal energy U. The entropic part of
F is again the sum of the electron and ion contributions
including the contributions due to the ES interactions. It is
given by [23]

TiSi þ TeSe ¼ � X
�¼e;i

N��BT�ðln �n��3
� � 1Þ

þ 3

2

X
�¼e;i

N��BT� � "0�
2
d

2

Z
’2d�; (6)

where �� ¼ ð@2=2�m��BT�Þ1=2 and the last term in the
right-hand side of [6] is the contribution due to the ES
interactions. The expression for F is the sum of the expres-
sions in Eq. (5) and (6), and is given by

F ¼ X
�¼e;i

N��BT�ðln �n��3
� � 1Þ � q2i N

2
i

2"0�
2
dV

þ q2i
8�"0

X
i

X
j�i

expð��dðri � rjÞÞ
jri � rjj � q2i Ni�d

8�"0
: (7)

It is instructive to compare this expression with the free
energy FV of the van der Waals gas given by (in the low
density limit)

FV ¼ N�BTðlnn�3 � 1Þ � aN2

V
þ b�BTN

2

V
; (8)

where � ¼ ð@2=2��BmTÞ1=2. The first term on the right-
hand side of (8) is the thermal contribution, the second term
is the cohesive field, which is inversely proportional to the
volume and makes the system unstable as the volume is
lowered (spinodal instability). The third term in the right-
hand side of (8) is the effective repulsion between particles
due to the finite sizewhich stabilizes the system in the high-
density limit. Our expression for F in Eq. (7) is similar to F
for the van der Waals gas given in Eq. (8). There is a
cohesive part proportional to 1=V in both expressions,while
the effective repulsion due to finite particle size in real gases
is replaced by the Yukawa repulsion between charged par-
ticles in UCN plasmas. If this interparticles repulsion in
Eq. (7) can be shown to stabilize the instability of the system

driven by the second term at high densities, then the system
will exhibit first order liquid-vapor phase transition and a
critical point [the last term in Eq. (7), being independent of
V does not contribute]. The ion pressure is given by the
relation

Pi ¼ ni
V

@F

ni

��������Ti

¼ q2i ni
8�"0

@

@ni

X
i

X
j�i

expð��djri � rjjÞ
jri � rjj

� q2i n
2
i

2"0�
2
d

þ NikBTi

V
; (9)

where ni (or V) dependence of the first term in the right-
hand side of (9) is implicit in the double summation. A
critical point is given by the condition [35]

dPi

dð1=niÞ
��������Ti

¼ 0;
d2Pi

dð1=niÞ2
��������Ti

¼ 0;
d3Pi

dð1=niÞ3
��������Ti

<0:

(10)

The free energy F, the ion pressure Pi, and a CP can be
calculated by evaluating the double summation in Eqs. (7)
and (9) by MD simulations of the motion of Ni ions inter-
acting via the Yukawa potential. In the following, we
present a mean field theory of phase transitions and phase
coexistence.
Mean field theory.— This theory is based on the funda-

mental assumption that the system has only a mean long-
range order. Any short-range order related to thermody-
namic fluctuations is neglected. In this case, the mean field
approximation can be invoked where the double summa-
tion is replaced by Nih, where h is the number of nearest

neighbors and jri � rjj is approximated by a, where a ¼
ð3=4�niÞ1=3 is the average interparticle distance. This ap-
proximation is similar to the Bragg-William mean field
approximation commonly used in Ising models [34]. Since
the Yukawa potential is shielded beyond �d, we take h ¼
4�ni�

3
d=3. Thus, the energy due to the Yukawa repulsion

between the ions is � Nið4�ni�3
d=3aÞ expð��daÞ.

Since the latter scales as n4=3i in Eq. (7), it will be able to
stabilize the low temperature phase (of the ions) at high
densities. We use the following normalization for the den-
sity and the temperature: n ¼ 4�ni�

3
de=3, T ¼ Ti�de=q

2
i .

With these normalizations, the equation of state for the
ions is

P ¼ n7=3

6
ð4þ n�1=3Þ expð�n�1=3Þ � 3

2
n2 þ nT: (11)

From the condition given in Eq. (10), the critical constants,
in normalized variables are TC ¼ 6:65, nC ¼ 6:66. The
CCPs are usually defined as �i ¼ q2i =4�"0�BTi, � ¼
a=�d. In terms of the CCPs, the critical constants are given
by �C ¼ 0:3, �C ¼ 0:53.
For temperatures T > TC, the ions are supercritical

while for T < TC they are subcritical. In Fig. 1, we display
the critical isotherm (TC ¼ 6:65), a supercritical isotherm
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(T ¼ 10) and a subcritical isotherm (T ¼ 5). The liquid
phase and the phase coexistence of the ion component
occurs for subcritical temperatures in the range T < TC

and for inverse normalized ion densities in the interval
0:1< 1=n < 1. For typical UCN plasma parameters ne �
5� 109 cm�3, Te � 40 K [10], the liquid phase and phase
coexistence will occur for Ti < TiC � 15 K, and ion num-
ber densities in the interval 109 � ni � 1010 cm�3. Since
these are in the range of typical ion densities and tempera-
ture that are experimentally available [10,11], it is possible
to observe liquid-vapor phase coexistence and a critical
point in the present day UCN plasmas. The ions will be in
the liquid state or in the mixed phase Ti < 15 K. Along the
isotherm for T ¼ 5 (or Ti ¼ 12 K) we have also shown the
phase coexistence line which is drawn by minimizing the
Gibbs potential G ¼ Fþ Pi=ni [34]. The ions will
undergo a first order phase transition and exist in vapor
and liquid phases along this line. Thus, in Fig. 1, for Ti ¼
12 K, the ions will be in a mixed phase of vapor and liquid
for 0:5> �> 0:2, while they will be in a strongly coupled
liquid phase for �> 0:5. This is consistent with the results
of numerical simulations, which show the ions to be in a
strongly coupled liquid state with � � 2 [11,12,37]. For a
certain range of parameters, especially for very low ion
temperatures, Eq. (11) predicts a negative ion pressure.
These may be attained only during phase transitions and
is unstable. However, as is well known, the van der Waals
equation also predicts negative pressure of real gases,
which is unstable but exists in nature and is important for
some biotic mechanisms. Furthermore, negative pressures
have also been encountered in numerical studies of
strongly coupled pure ion plasmas [39], indicating the
possibility of liquid-vapor transitions in such systems.

The mean field theory presented here thus indeed shows
the existence of a critical point and liquid-vapor phase
coexistence in UCN plasmas. The values of critical

constants calculated from low-dimensional mean field
theories are generally at variance with experimental values
[35]. Since UCN plasmas are three dimensional, the criti-
cal constants calculated here by using the mean field theory
may only be approximately correct. Better estimates may
be obtained from MD simulations, field theoretic calcula-
tions or renormalization group analysis [35,36]. The use of
the Yukawa potential, which is strictly valid for � � 1, for
values of � in the range � � 1 may be another source of
error in values of critical constants, and a better nonlinear
model for the interparticle potential is needed. However, as
stated before, experiments and simulations have shown
that the Yukawa potential gives a good description
of UCN plasmas for a wide range of � values, viz. 0 �
� � 5 [25].
To summarize, we have demonstrated that for typical

parameters of UCN plasmas, the ions will exist either in a
mixed (liquid-vapor) or in a strongly coupled liquid phase.
The expressions for the Helmholtz energy and the ion
pressure are obtained by using the mean field approxima-
tion. The isotherm of the ion pressure shows the existence
of a critical point and liquid-vapor phase coexistence. The
first order phase transition is driven by the cohesive fields
in the background of weakly coupled electrons. Depending
on the ion temperature (below a critical point), the mixed
phase occurs for a range of � values. For values of � above
this range, the ions are in a strongly coupled liquid state. In
the present day UCN plasmas with Ti ¼ 12 K, the strongly
coupled liquid state occurs for �> 0:5. This is consistent
with the results of numerical simulations [11,12,37], which
show the ions to be in a strongly coupled liquid state
with � � 2.
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