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Compressible isothermal turbulence is analyzed under the assumption of homogeneity and in the

asymptotic limit of a high Reynolds number. An exact relation is derived for some two-point correlation

functions which reveals a fundamental difference with the incompressible case. The main difference

resides in the presence of a new type of term which acts on the inertial range similarly as a source or a sink

for the mean energy transfer rate. When isotropy is assumed, compressible turbulence may be described

by the relation� 2
3"effr ¼ F rðrÞ, where F r is the radial component of the two-point correlation functions

and "eff is an effective mean total energy injection rate. By dimensional arguments, we predict that a

spectrum in k�5=3 may still be preserved at small scales if the density-weighted fluid velocity �1=3u is

used.
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Introduction.—Fully developed turbulence is often seen
as the last great unsolved problem in classical physics
which has evaded physical understanding for many deca-
des. Although significant advances have been made in the
regime of wave turbulence for which a systematic analysis
is possible [1], the regime of strong turbulence—the sub-
ject of this Letter—continues to resist modern efforts at a
solution; for that reason, any exact result is of great im-
portance. In his third 1941 turbulence paper, Kolmogorov
derived an exact relation for incompressible isotropic hy-
drodynamics in terms of third-order longitudinal structure
function and in the asymptotic limit of a high Reynolds
number (Re) [2]. Because of the rarity of such results, the
Kolmogorov’s universal four-fifths law has a cornerstone
role in the analysis of turbulence [3]. Few extensions of
such results to other fluids have been made; it concerns, for
example, a scalar passively advected such as the tempera-
ture or a pollutant in the atmosphere, quasigeostrophic
flows, or astrophysical magnetized fluids described in the
framework of (Hall) MHD [4]. It is only recently that an
attempt to generalize such laws to axisymmetric turbulence
has been made, but an additional assumption is made about
the foliation of the correlation space [5].

The previous results are found for incompressible fluids,
and to our knowledge no universal law has been derived for
compressible turbulence (except for the wave turbulence
regime [6]), which is far more difficult to analyze. The lack
of knowledge is such that even basic statements about
turbulence like the presence of a cascade, an inertial range,
and constant flux energy spectra are not well documented
[7]. That is in contrast with the domain of application of
compressible turbulence which ranges from aeronautical
engineering to astrophysics [8–10]. In the latter case it is
believed that highly compressible turbulence controls star
formation in interstellar clouds [11], whereas in the former
case Re is relatively smaller.

In that context, the pressureless hydrodynamics is an
interesting model to investigate the limit of high Mach
number compressible turbulence whose simplest form is
the one-dimension Burgers equation, which has been the
subject of many investigations [12]. Among the large
number of results, we may note that with exact field-
theoretical methods it is possible to find explicit forms of
some probability distributions [13]; it is also possible to
derive the corresponding exact Kolmogorov law for the
third-order structure function [3].
In the general case, our knowledge of compressible hy-

drodynamic turbulence is mainly limited to direct numeri-
cal simulations [14]. The most recent results for supersonic
isothermal turbulence with a grid resolution up to 20483

[15] reveal that the inertial range velocity scaling deviates
substantially from the incompressible Kolmogorov spec-
trum with a slope of the velocity power spectrum close to
�2 and an exponent of the third-order velocity structure
function of about 1.3. Surprisingly, the incompressible pre-
dictions are shown to be restored if the density-weighted

fluid velocity�1=3u is used instead of simply the velocityu.
Although a�2 spectrum may be associated with shocks—
like in one dimension—it seems that their contribution in
three dimensions (3D) ismore subtle. Generally speaking, it
is fundamental to establish the equivalent of the 4=5 law for
compressible turbulence before going to the more difficult
problem of intermittency [16].
In this Letter, compressible isothermal hydrodynamic

turbulence is analyzed in the limit of high Re. We shall
investigate the nature of such a compressible turbulence
through an analysis in the physical space in terms of two-
point correlation functions. In particular, the discussion is
focused on the isotropic case for which a simple exact
relation emerges. The theoretical predictions illuminate
some recent high-resolution direct numerical simulations
made in the astrophysical context.
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Homogeneous compressible turbulence.—We start
our analysis with the following 3D compressible equa-
tions [17]:

@t�þ r � ð�uÞ ¼ 0;

@tð�uÞ þ r � ð�uuÞ ¼ �rPþ��uþ�

3
rðr � uÞ þ f;

where � is the density, u the velocity, P the pressure,� the
coefficient of viscosity, and f a stationary homogeneous
external force acting at large scales. The system is closed
with the isothermal equation P ¼ C2

s�, where Cs is the
speed of sound. The energy equation takes the form

@thEi ¼ ��hðr � uÞ2i � 4
3�hðr � uÞ2i þ F; (1)

with h i an ensemble average (which is equivalent to
a spatial average in homogeneous turbulence), E ¼
�u2=2þ �e the total energy, e ¼ C2

s lnð�=�0Þ (�0 is a
constant density introduced for dimensional reasons), and
F the energy injected.

The relevant two-point correlation functions associated
with the total energy may be obtained by noting that for
homogeneous turbulence

h�ð�uÞ � �ui ¼ 2h�u2i � hð�þ �0Þu � u0i; (2)

h���ei ¼ 2h�ei � h�e0 þ �0ei; (3)

where for any variable �, ����ðxþrÞ��ðxÞ��0 ��.
Then, we find

RðrÞ þRð�rÞ
2

¼ hEi � 1

4
h�ð�uÞ � �ui � 1

2
h���ei;

(4)

where RðrÞ � h�u � u0=2þ �e0i � hRi and Rð�rÞ �
h�0u0 � u=2þ �0ei � h ~Ri. Note that for homogeneous
compressible turbulence the relationRðrÞ ¼ Rð�rÞ holds
only when isotropy is assumed, whereas it is always valid
in the incompressible limit for which R is reduced to a
second-order velocity correlation function [18]. As we will
see below, relation (4) is very helpful for deriving an exact
relation for some two-point correlation functions. In prac-
tice, we shall derive a dynamical equation for RðrÞ; first,
we have to compute

@th�u � u0i ¼ h�u � @tu0 þ u0 � @tð�uÞi
¼

�
�u �

�
�u0 � r0u0 � 1

�0 r0P0
��

þ hu0 � ½�r � ð�uuÞ � rP�i þ 2Dþ 2F ;

(5)

where for simplicity 2D and 2F denote, respectively, the
contributions to the correlation of the viscous and forcing
terms. By remarking that

�
�

�0u �r0P0
�
¼

�
�C2

su‘
@0‘�

0

�0

�
¼ h�u‘@0‘e0i ¼ hr0 � ð�e0uÞi

and that

hu0 � r0ð�u �u0Þi ¼ hr0 � ½�ðu �u0Þu0���ðu �u0Þðr0 �u0Þi;
we can rewrite (5) in the following way:

@th�u � u0i ¼ h�u0 � r0ð�u � u0Þ � r0 � ð�e0uÞi
� hr � ½�ðu � u0Þuþ Pu0�i þ 2Dþ 2F

¼ rr � h��ðu � u0Þ�uþ Pu0 � �e0ui
þ h�ðu � u0Þðr0 � u0Þi þ 2Dþ 2F : (6)

Second, we have to complete the computation with

@th�e0i ¼ h�@te0 þ e0@t�i ¼
�
C2
s

�

�0 @t�
0 þ e0@t�

�

¼
�
�C2

s

�

�0 r0 � ð�0u0Þ � e0r � ð�uÞ
�

¼ �hr0 � ðC2
s�u

0Þi þ
�
�0u0 � r0

�
C2
s

�

�0

��

� hr � ð�e0uÞi: (7)

By noting that�
�0u0‘@

0
‘

�
C2
s

�

�0

��
¼ �hr0 � ð�e0u0Þi þ he0r0 � ð�u0Þi;

we obtain after simplification

@th�e0i ¼ rr � h��e0�u� Pu0i þ h�e0ðr0 � u0Þi: (8)

The combination of (6) and (8) leads to

@tRðrÞ ¼ hðr0 � u0ÞRi þDþF

þrr � h�R�u� 1
2Pu

0 � 1
2�e

0ui: (9)

The same type of analysis may be performed for Rð�rÞ
which eventually leads to the dynamical equation

@t

�
RðrÞ þRð�rÞ

2

�
¼ 1

2
hðr0 � u0ÞRi þ 1

2
hðr � uÞ ~Ri

þ 1

2
ðDþ ~DþF þ ~F Þ

þ 1

2
rr �

�
�ðRþ ~RÞ�u

� 1

2
ðPu0 � �e0u� P0uþ �0eu0Þ

�
;

(10)

where ~D and ~F denote, respectively, the additional con-
tribution of the viscous and forcing terms.
Local turbulence.—For the final step of the derivation,

we shall introduce the usual assumption specific to 3D
fully developed turbulence with a direct energy
cascade [3,17]. In particular, we suppose the existence of
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a statistical steady state in the infinite Reynolds number
limit with a balance between forcing and dissipation. We
recall that the dissipation is a sink for the total energy and
acts mainly at the smallest scales of the system. Then, far in
the inertial range we may neglect the contributions of D
and ~D in Eq. (10) [19]. The introduction of structure
functions leads to the final form

�2" ¼ hðr0 � u0ÞðR� EÞi þ hðr � uÞð ~R� E0Þi

þ rr �
��

�ð�uÞ � �u
2

þ ���e� C2
s
���

�
�u

þ ��e�ð�uÞ
�
; (11)

where ��X � ðX þ X0Þ=2 and " is the mean total energy
injection rate [which is equal to the mean total energy
dissipation rate; see relation (1)]. Note that at relatively
small r the function R� E (and ~R� E0) and its derivative
are negative since the correlation between two points is
maximum if the points are the same.

It is straightforward to show that in the limit of incom-
pressible turbulence we recover the well-known expres-
sion; indeed, we obtain (with � ! �0 ¼ 1)

� 4" ¼ rr � hð�uÞ2�ui; (12)

which is the primitive form of Kolmogorov’s law. An
integration over a ball of radius r leads to the well-known
expression [20] �ð4=3Þ"r ¼ hð�uÞ2�uri, where r means
the radial (often called longitudinal) component, i.e., the
one along the direction r.

Isotropic turbulence.—Expression (11) is the main result
of the Letter. It is an exact relation for some two-point
correlation functions when fully developed turbulence is
assumed. It is valid for homogeneous—not necessarily
isotropic—3D compressible isothermal turbulence. Note
that the pressure contribution appears through the term
C2
s
��� and is therefore negligible in the large Mach number

limit (Cs ! 0). When isotropy is additionally assumed,
this relation can be written symbolically as

� 2" ¼ SðrÞ þ 1

r2
@rðr2F rÞ; (13)

where F r is the radial component of the isotropic energy
flux vector. In comparison with the incompressible case
(12), expression (13) reveals the presence of a new type of
term S which is by nature compressible since it is propor-
tional to the dilatation (i.e., the divergence of the velocity).
This term has a major impact on the nature of compressible
turbulence since as we will see it acts like a source or a sink
for the mean energy transfer rate. Note that S consists of
two terms which account for the two-point measurement
approach.

Discussion.—We may further reduce Eq. (13) by per-
forming an integration over a ball of radius r. After sim-
plification, we find the exact relation

� 2

3
"r ¼ 1

r2

Z r

0
SðrÞr2drþF rðrÞ: (14)

We start the discussion by looking at the small scale
limit of the previous relation which means that the scales
are assumed to be small enough to perform a Taylor
expansion but not too small to be still in the inertial
range. We obtain SðrÞ¼Sð0Þþr@rSð0Þ¼ r@rSð0Þ, which
leads to

� 2
3½"þ 3

8r@rSð0Þ�r � �2
3"effr ¼ F rðrÞ: (15)

Note that we do not assume the cancellation of the first
derivative of S at r ¼ 0, although the function R� E
reaches an extremum at r ¼ 0; the reason is that this
function is weighted by the dilatation function, which
may have a nontrivial form. We see that at the leading
order the main contribution of SðrÞ is to modify " for
giving an effective mean total energy injection rate "eff .
Then, the physical interpretation of (15) is the following.
When the flow is mainly in a phase of dilatation (positive
velocity divergence), the additional term is negative and
"eff is smaller than ". On the contrary, in a phase of
compression, @rSð0Þ is positive and "eff is larger than ".
An illustration of dilation and compression effects in the
space correlation is given in Fig. 1. In both cases, the flux
vector F (dashed arrows) is oriented towards the center of
the sphere (r ¼ 0) since a direct cascade is expected.
Dilatation and compression act additionally (solid arrows):
In the first case, the effect is similar to a decrease of the
local mean total energy transfer rate, whereas in the second
case it is similar to an increase of the local mean total
energy transfer rate.
The discussion may be extended to the entire inertial

range (i.e., for larger values of r) when the (turbulent)
Mach number is relatively high. In this case, the analysis
is focused on expression (14) for which we have already
noted that a term like R� E is mainly negative. It is
interesting to note that SðrÞ is composed of two types of
term which are different by nature. First, there is the

FIG. 1. Dilatation (left) and compression (right) phases in
space correlation for isotropic turbulence. In a direct cascade
scenario, the flux vectors (dashed arrows) are oriented towards
the center of the sphere. Dilatation and compression (solid
arrows) are additional effects which act, respectively, in the
opposite or in the same direction as the flux vectors.
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dilatation dominated by the smallest scales in the flow—
the shocklets—which mainly give a negative contribution
with a fast variation [21]. Second, there is the correlation
R� E, which derives most of its contribution from rela-
tively larger scales with a slower variation. This remark
may lead to the assumption that both terms are relatively
decorrelated [19]. Then SðrÞ may be simplified as [by
using relation (4)]

S ðrÞ ’ �h ��ðr � uÞ½14�ð�uÞ � �uþ 1
2���e�i: (16)

The previous expression is not derived rigorously, but it
may give us some intuition about its contribution. For
example, we may expect a power law dependence close

to r2=3 for the structure functions. Direct numerical simu-
lations have never shown a scale dependence for the dila-
tation, and we may expect that it behaves like a relatively
small factor. Then SðrÞ will still modify " as explained in
the discussion above; however, the power law dependence
in r would be slightly different now. In conclusion and
according to this simple analysis, we see that compression
effects (through the dilatation) will mainly impact the
scaling law at the largest scales.

Compressible spectrum.—Wemay try to predict a power
law spectrum for compressible turbulence. First, we note
that several predictions have been made for the kinetic
energy spectrum and also for the spectra associated with
the solenoidal or the compressible part of the velocity [22].
We recall that, although these decompositions are conve-
nient for analytical developments, the associated energies
are not inviscid invariants and the predictions are heuristic.
For incompressible turbulence, the situation is different

because a prediction in k�5=3 for the kinetic energy spec-
trum may be proposed by applying a dimensional analysis
directly on the 4=5 law [3]. Although it is not an exact
prediction, the 4=5 law gives a stronger foundation to the
energy spectrum for which a constant flux is expected. This
remark was already noted, in particular, in recent 3D direct
numerical simulations of isothermal turbulence where it is
observed that the Kolmogorov scaling is not preserved for
the spectra based only on the velocity fluctuations [15].

We shall derive a power law spectrum for compressible
turbulence by applying a dimensional analysis on Eq. (11).
Dimensionally, we may find "effr� �u3. By introducing

the density-weighted fluid velocity v � �1=3u and follow-

ing Kolmogorov, we obtain EvðkÞ � "2=3eff k
�5=3, where

EvðkÞ is the spectrum associated to the variable v. Our
prediction is compatible with the measurements recently
made by direct numerical simulations [15], where the
authors have noted that the exponent of the third-order
velocity structure function is close to 1 if the field used is
v instead of u. (Note that two other scaling relations
may be predicted like for the pressure term.) As explained
by several authors [22], in compressible turbulence we do
not expect a constant flux in the inertial range. Here, the
same conclusion is reached since we are dealing with

an effective mean energy transfer rate. More precisely,
if we expect a power law dependence in k for the effective
transfer rate, we arrive at the conclusion that a
steeper power law spectrum may happen at the largest
scales. According to relation (16) and the simple estimate

�v2 � r2=3, we could have EvðkÞ � k�19=9. This prediction
means that for a small prefactor in (16) one needs an
extended inertial range to feel the compressible effects
on the power spectrum. The scale at which the transition
happens between �19=9 and �5=3 may be the sonic
scale ks as proposed in Ref. [23], where such power
laws were detected; in our case, a rough estimate gives
ks � hðr � uÞ=�ui.
Conclusion.—The present work opens important per-

spectives to further understand the nature of compressible
turbulence in the asymptotic limit of large Reynolds num-
bers with the possibility to extend the analysis to magne-
tized fluids with possibly other types of closures (e.g.,
polytropic gas) or to improve intermittency models by
using the new relation—obtained by a statistical analysis
at low order—as pivotal for a heuristic extension to statis-
tical laws at higher order. We believe that astrophysics
(e.g., interstellar turbulence) is one of the most important
domains of application of the present work [10].
We acknowledge S. Boldyrev, A. Kritsuk, and T. Passot

for useful discussions.
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