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We show that weak measurement can be used to ‘‘amplify’’ optical nonlinearities at the single-photon

level, such that the effect of one properly postselected photon on a classical beam may be as large as that

of many unpostselected photons. We find that ‘‘weak-value amplification’’ offers a marked improvement

in the signal-to-noise ratio in the presence of technical noise with long correlation times. Unlike previous

weak-measurement experiments, our proposed scheme has no classical equivalent.
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An interaction between two independent photons could
be used to serve as a ‘‘quantum logic gate,’’ enabling the
development of optical quantum computers [1–3], as well
as opening up an essentially new field of quantum non-
linear optics [4]. Typical optical nonlinearities are many
orders of magnitude too weak to create a � phase shift as
required in initial proposals, but more recently it was
realized that any phase shift large enough to be measured
on a single shot could be leveraged into a quantum logic
gate [5]. Much recent work has shown that atomic coher-
ence effects [6–9] and nonlinearities in microstructured
fiber [10,11] can generate greatly enhanced Kerr nonline-
arities. While even a very small phase shift can be made
larger than the quantum (shot) noise, by using a sufficiently
intense probe, present experiments are limited by technical
rather than quantum noise and difficult to carry out even
with much averaging. For example, in Ref. [11], a phase
shift of 10�7 rad was measured by averaging over 3� 109

classical pulses with single-photon-level intensities. To
date, no one has yet been able to observe the cross-Kerr
effect induced by a single propagating photon on a
second optical beam [12]. In this Letter, we show that
using weak-value amplification (WVA) [13–15], a single
photon can be made to ‘‘act like’’ many photons, and it is
possible to amplify a cross-Kerr phase shift to an observ-
able value, much larger than the intrinsic magnitude of the
single-photon-level nonlinearity. In so doing, we also
demonstrate quantitatively how WVA may improve the
signal-to-noise ratio (SNR) in appropriate regimes, a result
of broad general applicability to quantum metrology.

Weak measurement is an exciting new approach to
understanding quantum systems from a time-symmetric
perspective, obtaining information from both their prepa-
ration and subsequent postselection [16]. In the past several
years, it has been widely studied to address foundational
questions in quantum mechanics [17], as well as for its
potential application to ultrasensitive measurements
[14,15,18,19]. If a quantum system is coupled only weakly
to a probe, then very little information may be obtained
from a single measurement, and in compensation, this

measurement disturbs the system by a negligible amount.
In such situations, if the system is prepared in some initial
state jii and postselected in some other final state jfi, the
‘‘weak value’’ hAiw ¼ hfjAjii=hfjii describes the mean
size of the effect an ensemble of such systems would
have on a device designed to measure the observable A.
It should be noted that weak values are not guaranteed to
lie within the eigenvalue spectrum of the observable A.
Specifically, if the overlap between the initial and final
states is small, the weak value may be anomalously large.
In Aharonov, Albert, and Vaidman’s famous example, the
spin of an electron may be measured to be 100 [13]; in a
mathematically equivalent sense, we show that the effec-
tive photon number in one arm of an interferometer may be
found to be 100 even if the entire interferometer contains
only one photon.
Unfortunately, WVA always comes at the cost of reduc-

ing the sample size (via postselection) by just enough to
nullify any potential improvement in SNR, at least in the
case of statistical noise. Several recent experiments [14,15]
observed that many real-world measurements are limited
by technical noise, which is not reduced by averaging over
more samples, and attempted to show that in such cases
weak measurement can indeed be of practical advantage. It
still remains unclear exactly when such ‘‘technical’’ noise
could be overcome by using WVA. In Ref. [15(b)], a very
specific noise model was assumed, in which rejection of
photons through postselection did not reduce the ultimate
signal strength, an assumption we do not make [20]. Here
we find that the SNR can be increased, roughly to but not
beyond the quantum limit, when the noise correlation times
are sufficiently long. Previous weak-measurement demon-
strations, instead of entangling a system with a distinct
‘‘probe,’’ merely used two degrees of freedom of the same
physical photon as the system and probe; this resulted in
experiments which could be equally well understood in
the framework of classical electromagnetism, with no
need of the full quantum formalism of weak measurement.
(Some implementations have been carried out with proba-
bilistic coupling between the system and the probe [21].)
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Our present proposal demonstrates that two distinct optical
beams may be coupled deterministically, by using acces-
sible interactions, in such a way that no classical explana-
tion is possible, that the surprising weak-measurement
prediction of a single photon acting like a collection of
many photons is rigorously correct, and that the SNR can
be substantially improved by WVA, when the noise pos-
sesses long correlation times (e.g., 1=f noise).

The nonlinear interaction of interest here can be viewed
as a measurement in which a single-photon ‘‘system’’ is
coupled through the cross-Kerr effect to a classical probe
field; see Fig. 1. The single photon is sent through a 50-50

beam splitter, thus prepared in the superposition jii �
ðjbi � jaiÞ= ffiffiffi

2
p

of modes a and b. The single photon inter-
acts with a probe through a Kerr medium, leading to a
cross-phase shift that we model as expði�0n̂bn̂cÞ, where
�0 � 1 is the cross-phase shift per photon and n̂b (n̂c) is
the number operator for mode b (c). After the interaction
with the probe, the system is postselected to be in a state
nearly orthogonal to the initial one, jfi ¼ tjbi þ rjai, by
triggering on the detection of a photon at D1. This port
exhibits imperfect destructive interference when the reflec-
tivity r and transmissivity t, which we choose to be real
and positive, are slightly imbalanced. We define a small

postselection parameter � � hfjii ¼ ðt� rÞ= ffiffiffi
2

p � 1. The
weak value of the photon number in mode b is given by

hn̂biw ¼ hfjn̂bjii
hfjii ¼ t=

ffiffiffi
2

p

ðt� rÞ= ffiffiffi
2

p ’ ð1þ �Þ=2
�

’ 1

2�
: (1)

This means that whenever the postselection succeeds
(which occurs with probability �2 ignoring the measure-
ment backaction) the weak value of the photon number in
mode b is 1=� times the strong value 1=2. The postselec-
tion parameter � can be very small, leading to a large weak
value for the photon number in the system. Therefore,
within the weak-measurement formalism, the probe will
experience a cross-phase shift equivalent to that of many
photons, even though the system never has more than one
photon. In the rest of this Letter, we will show explicitly
that such a scheme does in fact lead to a large phase shift
and quantify the improvement in the SNR as a function of
the characteristics of the technical noise.
The state of the system and probe after coupling is

j�i ¼ 1ffiffiffi
2

p ðjbisj�ei�0ip � jaisj�ipÞ: (2)

For �0 � 1, the overlap between the two possible final

probe states is h�j�ei�0i ’ eij�j2�0�j�j2�2
0
=2. The amplitude

of this overlap, e�j�j2�2
0
=2, has to be close to 1 for the inter-

action to be weak, which implies j�j�0 � 1. The phase of
the overlap, j�j2�0, describes the average phase shift
imparted to the system by the probe. This phase does not
result in dephasing of the system state and therefore, in
principle, can be compensated by adding a phase shifter to
the upper interferometer. Without compensation, WVA
will occur only when j�j2�0 is close to an integer multiple
of 2�, where the overlap between the initial and final states
of the system is small. We define � to be the difference
between j�j2�0 and the closest multiple of 2�.
If the system is postselected to be in state jfi, the state of

the probe, jc ip ¼ shfj�i, collapses to a superposition of

two coherent states:

jc ip ¼
ffiffiffiffiffiffiffiffiffi
P�1

p
1
2½ð1þ �Þj�ei�0i � ð1� �Þj�i�; (3)

where P ’ j�j2�2
0=4þ �2 þ �2=4 is the post-selection

probability. The final state of the probe can be most easily
understood by displacing it to the origin in phase space,
defining j�i ¼ Dyð�Þjc ip, where Dð�Þ is the displace-

ment operator. For �0, j�j�0 � 1, one can write

j�i ’
ffiffiffiffiffiffiffiffiffi
P�1

p
½ð�þ i�=2Þj0i þ ði��0=2Þj1i�; (4)

where j0i and j1i are vacuum and single-photon number
states, respectively. The weak-measurement formalism ap-
plies if �2 � ð�2 þ j�j2�2

0Þ=4; in particular, as � ! 0,
one recovers the weak-measurement prediction jc ip ’
j� expði�0=�Þi, a coherent state with a largely enhanced
phase. On the other hand, if �2 � �2=4þ j�j2�2

0=4, the
postselection is significantly modified by the backaction of
the probe on the system. It is instructive to look at both
regimes and the transition between them and determine
what the maximum possible enhancement is, taking the
backaction into account.

0

FIG. 1 (color online). The single-photon system is prepared in
an equal superposition of arms a and b by the first beam-splitter
(BS1). After a weak cross-phase-modulation (XPM) interaction
with the probe, prepared in a coherent state j�ip, the system is

postselected on a nearly orthogonal state by detecting the single
photon in the nearly dark port, D1. The success probability of
postselection depends on the imbalance � in the reflection and
transmission coefficients of the beam splitter BS2 and the back-
action of the probe on the system. Using the lower interferometer
to read out the phase shift of the probe amounts to a measure-
ment of the system observable nb, the photon number in arm b.
The phase shifter � is used to maximize the sensitivity of the
measurement.
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Most of the interesting phenomena can be understood by
investigating properties of j�i. If � or � is much larger than
j�j�0, then the state j�i is approximately equal to a weak
coherent state: j�i ’ j0i þ i��0j1i=ð2�þ i�Þ. It can be
seen that � contributes to a shift in the imaginary quad-
rature (phase of jc ip) and � contributes to a shift in the real
quadrature (average photon number). On the other hand, if
j�j�0 is much larger than the two other terms, the state j�i
is approximately a single-photon number state.

The average phase shift can be measured by using the
lower interferometer in Fig. 1, e.g., as the ratio of the
difference of the photon numbers atD2 andD3 to the sum:

�� ¼ hM�ip
hMþip ’ �

2P
�0; (5)

whereM� ¼ n̂3 � n̂2. We should compare this value to the
phase shift �0 imparted to the probe by a single photon in
path b. The phase that one measures after successful
postselection is enhanced by a factor of �=2P. Figure 2
shows this enhancement factor as a function of post-
selection parameter � and the average number of probe
photons, j�j2. For sufficiently small backaction, the weak-
measurement prediction for the amplification, 1=2�, is
correct. However, as � becomes smaller, the amplification

grows but so does the backaction, until at �opt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�j2�2

0 þ �2
q

=2 a maximum amplification value is

achieved of 1=4�opt, half of the weak-measurement value.

For small �, the maximum phase shift is equal to 1=2j�j,
which is one-half the quantum uncertainty of the probe
phase. Thus, the WVA works up to the point where the
single-shot quantum-limited SNR would be on the order
of 1. Taking a closer look at the form of state j�i, one can
see that the large phase shift is caused by destructive
interference due to postselection; the vacuum term largely
cancels out, enhancing the importance of the single-photon
term. Note that the large overlap of the two possible probe
states corresponding to the two states of the system is
essential for this to occur.
The weakness condition j�j�0 � 1 is often met in

experimental situations, either because of the difficulty
of approaching quantum-limited performance at high
intensities or to avoid additional undesired nonlinear
effects. In Ref. [11], for instance, a cross-phase shift of
�0 ¼ 10�7 rad per photon was reported and unwanted
nonlinear effects were observed once the average number
of probe photons j�j2 reached about 106. In this situation,
both conditions of j�j�0 � 1 and j�j2�0 � 1 are met,
and WVA can be used to enhance the SNR.
In practice, phase measurement is subject to both quan-

tum and technical noise. While the average measured
phase is enhanced by a factor of �=2P, we expect the
uncertainty due to statistical noise to be inversely propor-
tional to the square root of the sample size, thus scaling as

1=
ffiffiffiffi
P

p
(recall that P is the probability of successful post-

selection). The overall SNR is hence multiplied by a factor

�=2
ffiffiffiffi
P

p
, which has a maximum value of 1=2 (the actual

photon number in arm b); in the case of pure quantum
noise, for instance, there is no advantage with postselec-
tion. In what follows, using a more general noise model, we
study under what type of technical noise WVA can be
beneficial.
Consider a nonpostselected measurement performed

over a total time T. Single photons are sent to the upper
interferometer at a rate �, and phase measurement is
triggered by the detection of a single photon. We term
the outcome of the ith measurement �i

m ¼ ��þ �i, where
the zero-mean fluctuating term �i includes the quantum
and technical noise. The average measured phase shift is
�m ¼ 1=ð�TÞP�T

i¼1h�i
mi ¼ ��. The uncertainty in this av-

erage value is given by ð��mÞ2 ¼ 1=ð�TÞ2 P�T
i;j¼1h�i�ji.

There are two possible extremes to be considered. In the
white-noise limit (noise correlation time 	c much shorter
than the mean time between successive measurements,
1=�), the correlation function can be modeled as a delta
function: h�i�ji ¼ ��2�ij. In particular, this holds for

quantum (shot) noise. In this limit the noise scales

statistically with the number of measurements: ��m ¼
��=

ffiffiffiffiffiffiffi
�T

p
. The opposite extreme is that of noise with

FIG. 2 (color online). The enhancement factor versus j�j2�0.
The parameters used are �0 ¼ 2�� 10�5 and � ¼ 0:01. The
enhancement factor is calculated by using the state of Eq. (3)
without any approximations. The dashed line shows the enhance-
ment factor if the average phase written by the probe on the
system, j�j2�0, is compensated; otherwise, enhancement occurs
whenever j�j2�0 is close to an integer multiple of 2�
(solid curve). The inset shows the enhancement factor as a
function of postselection parameter, �, in two different regimes:
(i) j�j2 ¼ 105, in which case the imparted phase on the system
by the probe, �, is 0 (solid blue line); (ii) j�j2 ¼ 102, where � is a
small nonzero phase (dashed green line). For large values of �
the weak-measurement prediction is valid; however, as � de-
creases, the backaction from the probe plays a more dominant
role. The dashed line shows the prediction of the weak-
measurement formalism.
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long-time correlations, 	c � 1=�, in which case
h�i�ji¼ ��2, and averaging cannot help reduce the
uncertainty.

In the postselected case, the sample size drops from

�T to P�T, and ��m increases to ��=
ffiffiffiffiffiffiffiffiffiffi
P�T

p
in the

delta-correlated case while it remains constant at �� in the
presence of long-time correlations. Given the enhancement

factor of �=2P, the SNR thus scales as �=2
ffiffiffiffi
P

p
(always<1,

as remarked earlier) in the former case but �=2P (which
may be � 1) in the latter case.

Figure 3 shows the calculated SNR as a function of
single-photon rate, �, where the noise is modeled with a
correlation function h�i�ji ¼ �ij=2j�j2 þ ��2 expð�ji�
jj=�	cÞ to account for delta-correlated quantum noise
and a technical contribution with correlation time 	c. The
nonpostselected SNR shows a knee around �	c ¼ 1, sep-
arating the regimes where measurements are not correlated
(�	c � 1) and highly correlated (�	c � 1). The SNR has

a statistical scaling
ffiffiffiffi
�

p
in the former regime and remains

constant in the latter. The graphs for the postselected
cases are qualitatively similar, but the knee occurs near
P�	c ¼ 1, that is, when the noise in the successive post-
selected measurements starts to become correlated. Thus
whenever the noise exhibits correlations over time scales
greater than the mean time between incident photons, the
SNR can be improved via postselection.

We have shown that one postselected photon may act
like many photons, writing a very large cross-phase shift
on a coherent state, and that this amplification may greatly
improve the SNR for measuring single-photon-level
nonlinearities. Considering presently observable optical
nonlinearities, this opens the door to unambiguous
weak-measurement experiments, in which two distinct
physical systems could be deterministically coupled, leav-
ing no room for an alternative classical explanation.
Accounting for the effects of backaction when the weak-
ness criterion is relaxed, we find that the largest achievable
phase shift per postselected photon is always of the order of
the quantum uncertainty of the probe phase. More gener-
ally, we find that although postselection cannot enhance the
SNR in the presence of noise with short (or vanishing)
correlation times, particularly shot noise, it can be of great
use in the presence of noise with long correlation times.
Given the prevalence of low-frequency noise (e.g., 1=f
noise) in real-world systems, this suggests that WVA
may find broad application in precision measurement.
During the completion of this work, an independent

proposal for weakly coupling photons to atomic ensembles
was also posted to the arXiv [22].
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